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Data Evaluation and Enhancement for Quality
Improvement of Machine Learning

Haihua Chen , Jiangping Chen , and Junhua Ding

Abstract—Poor data quality has a direct impact on the perfor-
mance of the machine learning system that is built on the data. As
a demonstrated effective approach for data quality improvement,
transfer learning has been widely used to improve machine learning
quality. However, the “quality improvement” brought by transfer
learning was rarely rigorously validated, and some of the quality
improvement results were misleading. This article first exposed
the hidden quality problem in the datasets used to build a ma-
chine learning system for normalizing medical concepts in social
media text. The system was claimed to have achieved the best
performance compared to existing work on a machine learning
task. However, the results of our experiments showed that the
“best performance” was due to the poor quality of the datasets
and the defective validation process. To address the data quality
issue and build a high-performance medical concept normalization
system, we developed a transfer-learning-based strategy for data
quality enhancement and system performance improvement. The
results of the experiments showed a strong correlation between
the quality of the datasets and the performance of the machine
learning system. The results also demonstrated that a rigorous
evaluation of data quality is necessary for guiding the quality
improvement of machine learning. Therefore, we propose a data
quality evaluation framework that includes the quality criteria
and their corresponding evaluation approaches. The data vali-
dation process, the performance improvement strategy, and the
data quality evaluation framework discussed in this article can
be used for machine learning researchers and practitioners to
build high-performance machine learning systems. The code and
datasets used in this research are available in GitHub (https:
//github.com/haihua0913/dataEvaluationML).

Index Terms—Convolutional neural network (CNN), data
quality, medical concept normalization, recurrent neural network
(RNN), transfer learning.
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I. INTRODUCTION

D EEP learning [1] as the most crucial breakthrough in
machine learning history has drawn great attention from

academics as well as industries. Its success stories include
winning the world champions in Go game playing [2], beating
human experts on recognizing objects in images, and signifi-
cantly improving the quality of voice recognition, natural lan-
guage processing (NLP), and autopiloting. However, lacking of
high-quality training data becomes a major threat to the usage of
deep learning. Approaches, such as crowdsourcing web data [3]
or transferring data from other domains [4], have been proposed
for enhancing training data. Nevertheless, these data could in-
troduce noises, such as invalid data and label noises. Although
some carefully designed deep learning models are robust to
massive label noises [5], the computing rule of “garbage in,
garbage out” is still applicable to deep learning. An experimental
study performed by Buolamwini and Gebru [6] has shown a
face-recognition-based gender classification system that was
implemented with machine learning algorithms produced 0.8%
error rate for recognizing the faces of lighter skinned males,
but as high as 34.7% error rate for recognizing the faces of
darker-skinned females. The problem was due to the significant
imbalance of the training datasets in skin colors. Rajpurkar
et al. [7] reported a deep learning system called ChexNet that was
developed for diagnosing pneumonia diseases based on chest
X-ray images. They claimed that the CheXNet exceeded aver-
age radiologist performance on pneumonia detection on both
sensitivity and specificity [7]. However, many radiologists and
machine learning experts suspected the result due to the ques-
tionable dataset [8]. Eklund et al. [9] reported an investigation re-
garding the validity of several fMRI studies of weakly significant
neuroimaging results that have been published. The problem
is due to the inadequate validation of the statistical methods
with real data in the fMRI studies [9]. Many experiments have
shown that data with poor quality could negatively impact the
performance of deep learning significantly [10], [11]. Other
experiments have demonstrated that better quality of training
data could improve the performance of deep learning [12], [13].
Therefore, a systematic evaluation of the quality of the dataset is
critical for building a high-quality machine learning system. The
evaluation result would offer guidelines for data enhancement
and system performance improvement.

One of the purposes of this study is to understand the impact
of data quality on the performance of machine learning systems
that are built on the data. Data quality is a multidimensional

0018-9529 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Texas. Downloaded on August 30,2023 at 21:15:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7088-9752
https://orcid.org/0000-0002-7088-9752
https://orcid.org/0000-0001-6201-393X
https://github.com/haihua0913/dataEvaluationML
mailto:haihua.chen@unt.edu
mailto:jiangping.chen@unt.edu
mailto:junhua.ding@unt.edu
https://doi.org/10.1109/TR.2021.3070863


832 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 2, JUNE 2021

TABLE I
EXAMPLES OF MAPPING MEDICAL CONCEPTS TO TWITTER PHRASES

Note: The left column shows the formal medical concepts, whereas
the right column shows the informal phrases.

concept on qualitative and quantitative attributes of data, and
the definition varies under different contexts. For example, “data
quality” could be about measuring the wrong data or missing
data in the general context [14], or it means “satisfying the needs
and preferences of its users” in a particular context [15], [16]. In
this article, we define “data quality” as a measurement of data
for fitting the purpose of building a machine learning system.
Selected quality dimensions, such as comprehensiveness, cor-
rectness, and variety, will be used to assess the data quality [15],
[17].

In this article, we first investigated an overclaimed perfor-
mance improvement of a machine learning system. The prob-
lem was due to the poor quality of the datasets for building
the system and the problematic validation process. Based on
the investigation of the results, we proposed the data quality
requirements to validate a machine learning system. Then, we
experimented different strategies for performance improvement
of the machine learning system that was built on the poor-quality
datasets. Finally, we introduced a framework for evaluating
the data quality to ensure the quality requirements of datasets
for building a high-quality machine learning system. The data
validation process, the performance improvement strategies, and
the data quality framework are explained through studying a
medical concept normalization system, which maps an informal
medical term or phrase in social media text into a formal medical
concept [18]. Table I lists some examples of medical concept
normalization, where the informal phrase “fatigue” is mapped
to the medical concept “influenza.”

The medical concept normalization system we study in this
article was first reported in [18]. It was built on deep learning
models, which require a large amount of training data. The
datasets presented in this article seem insufficient and there is a
large portion of overlap between the training and the test data.
However, the medical concept normalization system developed
in [18] that did not introduce any new model or algorithm
achieved much better performance comparing to other similar
systems at that time. The performance achievement is suspi-
cious and it might be due to the noises in the datasets [19].
Nevertheless, how can we find the problem? We developed a val-
idation approach that evaluated the system with well-designed
configurations of datasets and finally found the problem, which
was caused by the overlap between the test datasets and the
training datasets. The overlap of training and test datasets is
not necessary to cause the inflation of performance as soon as
the machine learning model is well trained and generalized. We
will show when the overlap may produce problems and how the

evaluation result can help the developer to improve the system
under development in Section III.

The next question we will discuss is how we can improve
the performance of the machine learning system that was devel-
oped on poor quality datasets. Different transfer-learning-based
strategies, including fine-tuning and using advanced language
models, were experimented for the performance improvement.
Transfer learning [20] is a machine learning method that devel-
ops a new model through reusing and tuning a trained model.
For example, one can build an image classification model for a
specific image classification task by reusing and tuning AlexNet
that was pretrained in ImageNet [21]. Transfer learning can also
be used for improving the quality of a dataset, where a dataset for
general applications is fine-tuned with a domain-specific dataset
through transfer learning.

However, transfer learning is not always effective for per-
formance improvement, as demonstrated in the experiments in
Section IV. Only carefully selecting the source dataset and target
dataset could produce the desired result. We designed a serial of
experiments to explain the best practices for applying transfer
learning for data quality improvement. Since data quality can
greatly impact the performance of machine learning, it is nec-
essary to define criteria for adequately evaluating it. We defined
the three most crucial data quality criteria: comprehensiveness,
correctness, and variety for evaluating the “fit for purpose” of
datasets for machine learning, and proposed approaches for
adequately evaluating the criteria. The three criteria are essential
for building a high-performance machine learning system and
guiding the application of transfer learning for quality improve-
ment of machine learning.

In summary, this research will answer a few important ques-
tions regarding the data quality to the performance of machine
learning.

1) Cross-validation (CV) might not be sufficient to validate
the performance of a machine learning system since the
test and the training datasets may share a significant
amount of data if the original dataset contains many dupli-
cated data items. In this case, can we design an approach
for better evaluating the system? How can we use the eval-
uation result for improving the performance of the system
under development? We conducted an experimental study
to answer these questions and proposed the solutions based
on the experiment results. The experiment results offer
evidence to present the seriousness of the problem and
show the necessity and the solution of assessing the quality
of machine learning datasets.

2) If the quality of the dataset is not high enough for building
a machine learning system with desirable performance,
what are the best strategies that can be applied for improv-
ing the system performance? In particular, under what cir-
cumstances can transfer learning be used for performance
improvement of the machine learning system? What are
the best practices for using transfer learning to improve
the performance of the machine learning system? We will
answer these questions through experiments of a group of
transfer-learning-based performance improvement strate-
gies on the medical concept normalization system.
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3) The data quality should be adequately evaluated before the
data are used for building a machine learning system, and
the evaluation results should be able to guide the system
validation and performance improvement. We need to be
clear about the criteria for adequately evaluating the data
quality for machine learning. How can we measure the
criteria and how the data quality evaluation result would
help the quality improvement? This research will propose
a data quality framework to answer these questions.

The remainder of this article is organized as follows. Section II
introduces the research background on data quality, medical con-
cept normalization, transfer learning, datasets, and experiment
settings. Section III describes the validation of a medical concept
normalization system to demonstrate the impact of data quality
on the performance of the system. Section IV discusses the
transfer-learning-based strategies for the quality improvement
of the medical concept normalization system. Section V pro-
poses a data quality framework for building a machine learning
system. Section VI conducts a comprehensive literature review
on medical concept normalization, data quality evaluation, and
transfer learning. Finally, Section VII concludes this article.

II. RESEARCH BACKGROUND

A. Data Quality

Data quality is on the comprehensive characterization and
measurement of quantitative and qualitative properties of data.
Wang and Strong defined data quality as “data that are fit for
use by data consumers” [17]. Wand and Wang defined data
quality as “the quality of mapping between a real-world state
and an information system state” [22]. In this research, data
quality means “satisfying the needs and preferences of its users
or tasks” or the capability of the data for “fit for purpose”
of building a machine learning system [15], [16]. It is about
the characterization and measurement of the state of data for
fitting the purpose of building a machine learning system.
Selected quality dimensions, such as comprehensiveness, cor-
rectness, and variety, will be used for assessing the data qual-
ity [15], [17] for building a high-performance machine learning
system.

B. Medical Concept Normalization

On social media platforms, such as Twitter, and online health
forums, such as Ask a Patient,1 users often share experiences
and opinions on various health topics. They ask health-related
questions, write reviews on medications, and describe the side
effects they experienced while taking a drug. Information from
these texts, if extracted and analyzed appropriately, can help
users and professionals to better understand the medical and
health problems and even to identify potential solutions. How-
ever, the lexical and grammatical variability of the language used
in social media platforms poses a key challenge for extracting
and analyzing the information. In particular, the frequent use
of informal language, nonstandard grammar, and abbreviation

1[Online]. Available: https://www.askapatient.com/

forms and typos in social media texts contribute to the challenge.
Medical concept normalization is a way to address the issue.
It maps a user-generated text regarding a health or medical
condition described in colloquial language to a medical concept
in a standard ontology, such as Unified Medical Language
System [23]. Table I lists some examples of medical concept
normalization.

C. Medical Concept Normalization System

Limsopatham and Collier [18] proposed a machine learning
approach for normalizing medical concepts in social media mes-
sages. The normalization was built on a neural-network-based
text classification to learn the mapping between social media
messages and medical concepts [18]. The normalization classi-
fier was built on either a convolutional neural network (CNN)
model [24] or a recurrent neural network (RNN) model [25].
The inputs of the CNN or RNN model are phrases and medical
concepts that are embedded into vectors using a language model,
such as Word2Vec [26]. They conducted the experiments on
three datasets: TwADR-S, TwADR-L, and AskAPatient. The re-
sults of the experiments reported in [18] showed the CNN model
with a language model, which was pretrained on Google News,
achieved the best performance among all the three datasets (i.e.,
0.4174, 0.4478, and 0.8141 regrading accuracy, respectively).
However, the same experiments conducted by Lee et al. [19]
showed that the RNN model outperformed the CNN model on
both TwADR-L and AskAPatient datasets when the language
model was trained with any of the seven different datasets,
and the best performance (i.e., 0.2530 and 0.6504 regrading
accuracy, respectively) is much lower than that was reported
in [18]. The high accuracy might be overclaimed in [18] since
the approaches applied in [18] and [19] were the same. The
“performance improvement” reported in [18] might be due to
the noises in the datasets, as pointed out by Lee et al. [19].
However, a systematic validation is needed to confirm the prob-
lem. We developed an approach for removing the noises in the
dataset and conducted a systematic investigation. We found that
the normalization performance decreased when the amount of
noises decreased in the datasets.

D. Fine-Tuning for Performance Improvement

Fine-tuning [27] takes a machine learning model, which was
trained for a task, to another task through fine-tuning the model
with task-specific datasets. Fine-tuning is a specific transfer
learning technique, which has been widely used in computer
vision and NLP to build a task-specific system quickly and to
improve the performance of the system [20]. In this research,
the machine learning models for medical concept normaliza-
tion were trained with datasets AskAPatient and TwADR-L.
The words in the datasets are converted into word vectors as
input to the model using a language model, such as Word2Vec.
The quality of the language model would decide whether the
semantics of a word are accurately captured in the corresponding
vector. Therefore, the quality of the dataset is indirectly decided
by the language model. Quality improvement of the language
model would improve the quality of the dataset. The language
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models, such as AWD-LSTM in ULMFit [28] or BERT [29],
were trained on general text. We expect that fine-tuning the
models with task-specific data would improve the performance
of the machine learning system built on the data.

The general steps for fine-tuning a deep learning model are
first to select a pretrained model and simply add layers in the
model for implementing the target task, then freeze the model
except for the least or the most significant layers and train the
model using the target dataset. More layers might be unfrozen
and the model is gradually trained until it is convergent.

E. Datasets

Several datasets are being used in our experiments. TwADR-L
and AskAPatient are used for medical concept normalization,
whereas datasets Cadec, Pubmed, Heathnews, and Big_tweet
are used for fine-tuning language models. Combinations of these
datasets are also developed for fine-tuning purpose.

1) Datasets for Medical Concept Normalization: Twitter
message dataset TwADR-L and blog message dataset AskA-
Patient were first introduced by Limsopatham and Collier for
medical concept normalization [18], and both are available for
downloading in Zenodo.org [30]. The Twitter messages col-
lected in TwADR-L are related to a set of drugs and adverse
drug reactions (ADRs). It contains 1436 distinct twitter phrases,
and each of them is mapped to one or more medical concepts
of the 2220 medical concepts, which are defined in SIDER 4.1
drug profile databases.2 This produces a total of 50 730 records
in TwARD-L, and each record consists of one informal phrase
and its corresponding medical concept. Among which, 48 057
records are used for training, 1256 records are used for valida-
tion, and 1427 are used for testing. However, only 273 among
the 2220 medical concepts map to the Twitter phrases [18],
which flags a comprehensiveness problem of the dataset. When
a Twitter phrase is mapped to multiple concepts, the phrase is
copied for multiple times so that the phrase appears multiple
times in the dataset but associated with different concept each
time. Therefore, the number of records is much higher than
the number of phrases (as mentioned earlier, there are 1436
phrases and 50 730 records). Dataset AskAPatient includes 3749
phrases, and each of them is mapped to at least one of the 1036
medical concepts defined in SNOMED-CT and the Australian
Medicines Terminology [18]. One phrase could be mapped to
more than one medical concept, and multiple phrases could
also be mapped to one medical concept. There are a total of
173 240 records in AskAPatient. Among which, 156 652 records
are used for training, 7926 records are used for validation, and
8662 records are used for testing. Table II summarizes the two
datasets. CV was used for the validation of the normalization
system, and Table III summarizes the statistics of the records of
the training dataset, validation dataset, and test dataset in each
of the ten folds that were developed in [18].

However, each dataset includes more than 50% duplicated
records (i.e., two records are exactly the same: the same phrase
is mapped to the same medical concept) and has a significant

2[Online]. Available: http://sideeffects.embl.de/

TABLE II
SUMMARY OF DATASETS TWADR-L AND ASKAPATIENT

Note: In the TwADR-L dataset, only 273 among 2220 medical
concepts are mapped to the 1436 Twitter phrases. In the AskA-
Patient dataset, each of the 3749 phrases is mapped to at least
one of the 1036 medical concepts.

TABLE III
SUMMARY OF THE NUMBER OF RECORDS IN EACH TEN-FOLD DATASET OF

ASKAPATIENT AND TWADR-L

Note: The ten-fold dataset is generated by Limsopatham and Collier [18]. The first
row lists the total number of records from all folds.

TABLE IV
SUMMARY OF THE NUMBER OF OVERLAPPED RECORDS IN THE DATASETS

Note: In each fold, around 60% records in the test dataset exist in its corresponding
training dataset.

amount of overlaps among the training datasets, their corre-
sponding validation datasets, and test datasets [19]. An overlap
existing in two datasets means the same record exists in the two
datasets. For example, if a record in a training dataset is “Hunger
– don’t want to eat,” and there is precisely the same record in
a test dataset, then the record is considered as an overlapped
record in the two datasets. Datasets AskAPatient and TwADR-L
contain many overlapped records, as shown in Table IV, which
describes the total overlaps, and the overlapped records in each
of ten folds. From the table, one can easily find almost 100% of
records in the validation dataset or the test dataset exist in the
corresponding training dataset. In each fold, around 60% records
in the test dataset exist in its corresponding training dataset.
The duplicated records will not impact the performance of the
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machine learning system if they are directly extracted from the
original data sources. However, the large amount of overlaps
between the training and test data could produce misleading
validation results when the datasets are used for testing the
system.

2) Datasets for Transfer Learning and Fine-Tuning: The
quality of datasets TwADR-L and AskAPatient is fairly low. For
example, dataset TwADR-L only includes a few formal medical
concepts, and both datasets are too small to be considered as
complete or comprehensive. Therefore, it is necessary to identify
new datasets to fine-tune the machine learning models in order
to improve the performance of the machine learning system. We
collected following four datasets from different sources that are
closely related to medical concept normalization to fine-tune
the medical concept normalization system that was developed
on datasets TwADR-L and AskAPatient.

1) Cadec dataset (abbreviated with “Cadec”): This dataset
represents CSIRO adverse drug event (ADE) corpus
(Cadec). It contains annotated corpus of medical forum
posts on patient-reported ADEs. It is useful for studies
in the area of information extraction, or more gener-
ically text mining, from social media to detect possi-
ble ADRs. We collected 7000 posts that are related to
12 drugs: arthrotec, cambia, cataflam, diclofenac potas-
sium, diclofenac sodium, flector, liptor, pennsaid, solarize,
voltaren, voltaren-XR, and zipsor.

2) Pubmed dataset (abbreviated with “Pub”): It includes 7000
sentences extracted from abstracts related to same 12
drugs mentioned in Cadec dataset from Pubmed database.

3) Healthnews dataset (abbreviated with “Health”): It
includes 7000 news extracted from 16 resources:
bbchealth, cbchealth, cnnhealth, everydayhealth, foxnew-
shealth, gdnhealthcare, goodhealth, kaiserhealthnews, la-
timeshealth, msnhealthnews, nbchealth, nprhealth, ny-
timeshealth, reutershealth, usnewshealth, and wsjhealth.

4) Big_tweet dataset (abbreviated with “Big_t”): It includes
7000 tweet sentences that were extracted from Healthcare
Twitter analysis project [31], which contains over six mil-
lion tweets concerning a wide range of medical conditions
for six months in 2014.

The datasets Pubmed and Healthnews contain many formal
medical concepts, whereas datasets Cadec and Big_tweet in-
clude only few formal medical concepts. Therefore, it would be
interesting to see how the combinations of two types of datasets
would impact the performance of transfer learning.

F. Language Models

Pretrained language models, as an essential component of
modern NLP, can offer significant performance improvement
over embeddings learned from scratch through fine-tuning [32].
ULMFit [28] is a well-known fine-tuning technique that has
been successfully used for the implementation of different text
classification tasks. Its fine-tuning is applied to the language
model AWD-LSTM. BERT [32] is the most widely adopted
pretrained language model that can be fine-tuned for specific

Fig. 1. Architecture of the RNN model for medical concept normalization [18].

tasks. Our fine-tuning experiments will be developed on ULMFit
and BERT.

ULMFit trains a general domain language model AWD-
LSTM with the open dataset WiKiText-103 [33], which is the
WiKiText long-term dependence language modeling dataset. It
includes 100 million tokens extracted from the set of verified
good and featured articles on Wikipedia. The dataset is well
suitable for training models that work for long-term dependen-
cies, such as the models used in this article. There are two
pretrained language models in BERT: BERT-base and BERT
large, which are trained on the same data—the entire Wikipedia
with 2500 million words and Book Corpus with 800 million
words, and tasks with different numbers of parameters [32].
In this article, we use the BERT-base model, which contains
a 12-layer bidirectional transformer encoder block with hidden
size 768 and 12 heads.3 BERT takes an input of a sequence of
no more than 512 tokens and outputs the representation of the
sequence [32].

G. Deep Learning Models

In this research, RNN models were used for normalizing
medical concepts since the RNN model outperformed the CNN
model, as being proven by Lee et al. in [19]. As shown in Fig. 1,
the input to the RNN model is word embeddings of phrases,
and the output from the Softmax layer is the corresponding
medical concepts of the input phrases. The word embeddings
are produced with a language model, such as Word2Vec [26],
GloVe [34], or BERT [29]. For example, the language model
used in [18] was built on Word2Vec that was trained with a
dataset that includes 100 billion words from Google News and
854 million words of medical articles [18]. The dimension of the
embedding vector is 300, which represents 300 closest words to
the current word. The RNN model consists of multiple recurrent
layers, and the output from the last layer is used for mapping to

3[Online]. Available: https://storage.googleapis.com/bert_models/2018_10_
18/uncased_L-12_H-768_A-12.zip
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TABLE V
EXPERIMENT FRAMEWORK

Note: The trained models were also tested with different test datasets.

a medical concept with a Softmax function, as shown in Fig. 1.
The details of the models can be found in the papers [18], [19].

H. Experiment Setting

Based on the aforementioned datasets, pretrained language
models, and deep learning models, we designed a group of
experiments to investigate the research questions. The settings
of these experiments are summarized in Table V. The objectives
of these experiments are described as follows.

1) Experiments to investigate the overclaimed performance
issue of the medical concept normalization system. The
experiment results will guide us to develop a data-driven
approach for better validating a machine learning system
and understanding how data quality affects the perfor-
mance of a machine learning system.

2) Experiments the strategies for performance improvement
of the medical concept normalization systems that were
developed on datasets TwADR-L and AskAPatient. The
experiments were built on the fine-tuning technique.
ULMFit was first fine-tuned with datasets TwADR-L and
AskAPatient for the medical concept normalization to
investigate the effectiveness of fine-tuning to the perfor-
mance improvement.

3) Experiments of fine-tuning the medical concept normal-
ization systems with more datasets to understand how
the target dataset would impact the performance of ma-
chine learning. We compared the performance of the
ULMFit-based medical concept normalization models
that were fine-tuned with the datasets built on datasets
Cadec, Pubmed, Healthnews, Big_tweet, TwADR-L, and
AskAPatient. The medical concept normalization classi-
fier was trained and validated with datasets TwADR-L
and AskAPatient. In order to investigate the impact of
the capability of language models on the performance of

machine learning, BERT was also fine-tuned with target-
task specific datasets TwADR-L and AskAPatient for the
medical concept normalization. The experiment settings
and results will be reported in Section IV.

III. SYSTEM VALIDATION

When checking datasets AskAPatient and TwADR-L, we
found there were a large amount of overlaps existing in differ-
ent datasets. Lee et al. also pointed out that the overclaimed
performance improvement could be due to the large overlap
between the training and the test data [19]. However, the overlap
is not necessary to contribute to the inflation of the normal-
ization performance. If the RNN model was well trained and
generalized, the overlap would not cause the problem. However,
many researchers might be too confident with their machine
learning models and the training process. As soon as they see the
validation loss is stable and lower than a threshold, the training
is stopped and the model is released. Nevertheless, the lower
validation loss could be due to the overfitting caused by the
overlap existing in the training, validation, and test datasets.

To our knowledge of deep learning, we have not seen a
systematic study to investigate the impact of the overlap in
datasets on the performance of deep learning. The widely used
N-fold CV might not be sufficient to reduce the overlap since
a dataset, such as TwADR-L, contains many duplicates. We
therefore conducted a series of experiments to identify the
change of the accuracy of normalizing medical concepts in
datasets AskAPatient and TwADR-L with a different portion
of overlapped data. The medical concept normalization system
is built on the RNN model proposed in [18] and language model
AWD-LSTM trained with WikiText-103 corpus [35].

A. Validation Results

In order to build the new test datasets with different percentage
of overlapped data between the training and test datasets, we
first generated a file that contains only the unique records in
the datasets. We select one fold as the test dataset from the ten
folds of the dataset and leave the other nine folds as training
and validation datasets. If a record in the test dataset also exists
in the training data or validation dataset, then the record and its
duplicates are removed from the test dataset. Then, we search for
records that do not exist in the testing dataset from the training
or validation datasets based on the file that contains only unique
records and add some of these records into the test dataset
to ensure it contains 10% records of the entire dataset. The
records and their duplicates that were added from the training
or validation datasets to the test dataset were removed from
their original datasets. Using this way, we can create a test
dataset that does not contain any overlapped record. We then
remove 10% records from the test dataset that we just tested
and then add 10% of records that exist in the training dataset.
Therefore, 10% of the test dataset are overlapped with the data in
the training dataset. Using the same schema, 20%, 30%,..., and
100% overlapped records were tested one by one. If the RNN
model was well trained, the accuracy of the normalization of the
medical concepts with different test datasets should be almost
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Fig. 2. Accuracy of normalizing medical concepts on datasets AskAPatient
and TwADR-L with different percentages of overlapped records in the test
dataset.

TABLE VI
ACCURACY OF MEDICAL CONCEPT NORMALIZATION ON DATASETS

ASKAPATIENT AND TWADR-L WITH A DIFFERENT PERCENTAGE OF

OVERLAPPED RECORDS IN THE TEST DATASET

Note: The accuracy increases proportionally with the
increment of the percentage of the overlapped data in
the test dataset, as can also be seen in Fig. 2.

the same even overlapped data exist. However, we found that
the accuracy increases proportionally with the increment of the
percentage of the overlapped data in the test dataset.

The results of the experiment show that the RNN model was
not well generalized. The claimed high accuracy was obtained
by applying the problematic test datasets. The same experiment
was conducted on both datasets, and the results support the same
conclusion. Therefore, it is necessary to develop a strategy to
enhance the data for improving the performance of the machine
learning system.

The difference in the accuracy of the medical concept nor-
malization among the ten folds is ignorable. Therefore, we
explain our experiments for evaluating the datasets using only
one fold in the following sections. Fig. 2 shows the testing
results of the accuracy of medical concept normalization on
datasets AskAPatient and TwADR-L with different percentage
of overlapped data, and Table VI lists the result.

B. Discussion

It is well understood that a large overlap between training
and test data could contribute to the nonexist high performance
of a machine learning model [19]. However, how do we know

whether the overlap causes a problem since the overlap does
exist more or less and it is not necessary to cause the problem?
In this research, we designed a validation approach that tests the
model with a different percentage of the overlap between the
training and test datasets. Suppose the percentage of the overlap
increases, the performance of the model under test increases
accordingly, the model might not be well trained. The test result
could help developers to take further actions for the system
improvement.

The results also help us to investigate another related question:
when is the test dataset adequate for testing a machine learning
model? Test coverage criteria are used to measure the testing
adequacy in software testing. The coverage criteria are normally
defined on the code and functions of the software under test. The
coverage criteria cannot be directly used for testing a machine
learning model since the logic of a machine learning model is
not explicitly predefined but learned from data. Therefore, a test
coverage criterion should be defined with the data to measure
the test adequacy. We already showed that the test data should
include a large amount of new data, but the requirement is
not sufficient since the new data could only represent a small
fraction of the population the data collected from. An ideal
criterion should be defined on the representativeness of the test
data to the population, which can be measured by comparing
the distributions of the test data and the population in selected
features. We will discuss the data quality evaluation in detail in
Section V.

IV. QUALITY IMPROVEMENT USING TRANSFER LEARNING

The machine learning models for the medical concept nor-
malization in this research were trained with datasets AskAP-
atient and TwADR-L. The phrases and the medical concepts
in the datasets are embedded as word vectors using a language
model. The vectors are input to a machine learning model, such
as a classifier that implements the mapping from an informal
phrase to a medical concept. Therefore, the data quality is also
indirectly decided by the quality of the language model since
it converts phrases into vectors. A language model decides
whether the semantics of phrases and medical concepts are
accurately captured in the word vectors. However, the language
models, such as ULMFit and BERT, were trained on general
text. The actual language model of ULMFit is AWD-LSTM,
but the model of ULMFit is the same as AWD-LSTM except
for the classification layer. Therefore, we use ULMFit to name
its language model when it does not cause confusion. In order
to improve the quality of word embedding, transfer learning,
in particular, the fine-tuning is used to fine-tune the language
model. In this section, we discuss the approaches for improving
the quality of machine learning through fine-tuning the language
model and its normalization task jointly and the language model
alone. The purpose is to investigate how the dataset used for
fine-tuning would impact the performance of fine-tuning and
then further impact the performance of machine learning. Based
on the investigation, we summarize the best practices for using
fine-tuning for performance improvement of a machine learning
system.
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A. Fine-Tuning Medical Concept Normalization Model

We fine-tuned the medical concept normalization model by
following the procedure developed in ULMFit [28], which in-
cludes two phases: first, fine-tune the language model using
task-specific datasets, and second, fine-tune the entire medical
concept normalization model that combines the language model
and the classifier using the training dataset. The language model
of ULMFit includes an embedding layer, followed by three
layers of LSTM [36], and a Softmax layer for the classification
as the last layer [28]. The language model was pretrained with
general text. We fine-tuned it with a dataset that is related to med-
ical concept normalization. In this way, we hope the fine-tuned
model would better represent the medical concept normalization
language. After the language model is fine-tuned, two addi-
tional layers implementing the classifier are added to the model
with one layer with rectified linear unit (ReLU) activations,
and followed by the last layer with Softmax activations. The
ReLU is fully connected with the output of the language model,
and its output is fully connected to the Softmax layer, which
carries out the normalization task. The layers of the language
model are “unfrozen” gradually during fine-tuning to ensure the
knowledge learned from the vast corpus is mostly kept. ULMfit
uses a discriminative fine-tuning technique that uses different
learning rate for each layer to effectively tune the model [28].
The fine-tuning procedure of ULMFit is summarized as follows.

1) Fine-tune the general language model with datasets AskA-
Patient or TwADR-L using the discriminative fine-tuning
technique, which uses the slanted triangular learning rates
to calculate the learning rate for each layer. The slanted
triangular learning rate first linearly increases the learning
rate and then linearly decays it [28].

2) Use the fine-tuned language model as a base, add a clas-
sifier to the model for the medical concept normalization
task, which includes a ReLU layer and a Softmax layer that
outputs a probability distribution over medical concepts.

3) Fine-tune the entire model (i.e., the language model and
the classifier together) using a gradual unfreezing tech-
nique with the training dataset in AskAPatient or TwADR-
L. It first freezes all layers of the model except the first
layer (we consider the Softmax as the last layer), which
is fine-tuned with one epoch. Then, the second layer is
unfrozen and fine-tuned, and the step is repeated until all
layers are unfrozen and tuned [28].

B. Initial Fine-Tuning Experiments

The ULMFit model, including the general language model
and the classifier together, that was designed for general text
classification tasks can be fine-tuned for the medical concept
normalization. The model is also an RNN model, same as the
model we used in Section III so that it can be directly used for
building the medical concept normalization. We conducted four
different experiments, which are as follows.

1) Train ULMFit model with the training dataset of AskA-
Patient, and test the trained model using the test dataset.
Fine-tuning was not implemented in this experiment.

TABLE VII
SUMMARY OF THE CV RESULTS OF MEDICAL CONCEPT NORMALIZATION THAT

WAS FINE-TUNED OR WAS NOT FINE-TUNED ON DATASETS

ASKAPATIENT OR TWADR-L

Note: Columns one and three show fine-tuning the model (with ULMFit) can
increase the accuracy of medical concepts normalization on both datasets.
The last row shows the accuracy performance averaged across the ten folds.

2) Fine-tune ULMFit language model using dataset AskAP-
atient, and then fine-tune the entire ULMFit model using
the training dataset of AskApatient, and test the trained
model using the test dataset of AskAPatient.

3) Train ULMFit model with the training dataset of TwADR-
L, and test the trained model using the test dataset. Fine-
tuning was not implemented in this experiment.

4) Fine-tune ULMFit language model using dataset TwADR-
L, and then fine-tune the entire ULMFit model using the
training dataset of TwADR-L, and test the trained model
using the test dataset of TwADR-L.

The experiments were conducted on an Ubuntu 18.04.3 LTS
machine with 1 NVIDIA Tesla Titan V GPU, 8 Intel(R) CPUs
(i7-9700 @3.00 GHz), and 128 GB of RAM. The embedding
dimension is 400. The batch size and epoch were dynamically
adjusted during experiments. Most hyperparameters were the
same as those used in pretraining [28]: Adam with β1 = 0.7 and
β2 = 0.999, weight dropout of 0.5 to the RNN hidden-to-hidden
matrix, learning rates were dynamically changed for fine-tuning
different layers.

CVs of the normalization of the medical concepts on datasets
AskAPatient and TwADR-L were conducted. Table VII sum-
marizes the CV results of the medical concept normalization
on datasets AskAPatient and TwADR-L. In the table, A(tuned)
and A (no tuned) represent the ULMFit model was and was not
fine-tuned using AskAPatient, respectively; T(tuned) and T(no
tuned) represent the ULMFit model was and was not fine-tuned
using TwADR-L, respectively. Figs. 3 and 4 show a comparison
of the medical concept normalization accuracy using CV on
datasets AskAPatient and TwADR-L, respectively.

The results in Table VII, Figs. 3 and 4 show that fine-tuning
the model can increase the accuracy of medical concept nor-
malization on both datasets. It implies that the performance of
a model that is trained on poor quality datasets can be improved
using well designed fine-tuning.

C. Fine-Tuning the Model With More Datasets

The initial fine-tuning results of the medical concept normal-
ization showed the potential of transfer learning for improving
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Fig. 3. Comparison of the accuracy of medical concept normalization that was
fine-tuned or was not fine-tuned on dataset AskAPatient.

Fig. 4. Comparison of the accuracy of medical concept normalization that was
fine-tuned or was not fine-tuned on dataset TwADR-L.

the quality of machine learning. However, the datasets still suffer
from an overlap problem, and the quality of the datasets is
essentially low. For example, dataset TwADR-L only includes
a few formal medical concepts, and it is too small. We would
like to know whether the performance of the medical concept
normalization can be further improved through fine-tuning the
models with new datasets.

We collected four datasets: Pubmed, Healthnews, Cadec, and
Big_tweet, as introduced in Section II and created the combi-
nations of these datasets. We conducted the experiments using
these datasets to fine-tune the ULMFit model by following the
same process discussed in Section IV-A. The training, valida-
tion, and test datasets are still the same as the original ones
from datasets AskAPatient and TwADR-L, and the training
and testing processes are the same as those used for the ex-
periments of the medical concept normalization described in
previous sections. The environment and parameter settings of
the experiment for fine-tuning ULMFit are the same as those
used in Section IV-B.

Table VIII lists the CV accuracy of the medical concept
normalization on the model ULMFit and BERT. The lan-
guage model of ULMFit was fine-tuned using different datasets

and BERT was fine-tuned using the datasets AskAPatient or
TwADR-L. All models were trained and tested using the training
datasets and the testing datasets in dataset AskAPatient. The first
row of the table lists the language models used in the experi-
ments, and the second row lists the datasets used for fine-tuning
the language model. For example, Pub means the language
model was fine-tuned using dataset Pubmed, Pub+Cadec means
the combination of datasets Pubmed and Cadec, Pub+Ask means
the combination of datasets Pubmed and AskAPatient, and all
others follow the same format. The third row to the 13th row
represent the result at each fold of the CV results, and the last row
is the average of the CV results across the ten folds. Table IX has
the same format, but the models were trained and tested using the
training datasets and the testing datasets in dataset TwADR-L.

Tables X and XI list the results of the same experiments as
those shown in Tables VIII and IX, respectively, except the
validation was conducted on test datasets that have different
percentage of overlapped records from those in the training
dataset.

D. Fine-Tuning Language Model

Since BERT is a very powerful state-of-the-art language
model, we would like to know how the choice of a language
model would impact the performance of the machine learning
model. BERT was pretrained with a huge amount of general text
and it can be fine-tuned with task-specific data to achieve the best
result [29]. We fine-tuned ULMFit in two phases: fine-tune the
language model and fine-tune the classifier together with the
language model. However, we only fine-tune BERT language
model. The output of the final transformer layer of the BERT
language model is then used as the feature sequences to be fed
to the classifier for the medical concept normalization.

We conducted the fine-tuning of language model BERT with
the task-specific data AskAPatient or TwADR-L for medical
concept normalization. The training, validation, and test datasets
are still the same as the original ones from dataset AskAPatient or
TwADR-L, and the training and testing processes are the same as
those used for the experiments of medical concept normalization
described in the previous sections. In order to comprehensively
compare the performance with the experiments of fine-tuning
the ULMFit model, we also conducted experiments with test
datasets that were designed with different percentages of over-
lapped data. The language model is BERT-Base-Uncased, which
has been introduced in Section II-F. We fine-tuned the BERT
model on 1-T TITAN V GPU and set the batch size to 16, with a
max sequence length of 128 and a learning rate of 2e-5 to ensure
that the GPU memory is fully utilized. The dropout probability is
always kept at 0.1. We use Adam with β1 = 0.9 and β2 = 0.999.
We empirically set the max number of the epoch and saved the
best model on the validation set for testing.

The last columns in Tables VIII and IX are the results of
the accuracy of the medical concept normalization on datasets
AskAPatient and TwADR-L, respectively, by using BERT-based
normalization model, whose language model is fine tuned with
the informal phrases in the AskAPatient or TwADR-L dataset.
The classifier for medical concept normalization is trained and
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TABLE VIII
SUMMARY OF THE CV RESULTS OF MEDICAL CONCEPT NORMALIZATION ON DATASETS ASKAPATIENT USING FINE-TUNED ULMFIT AND BERT

Note: BERT achieved the best performance. As for ULMFit fine-tuning, the performance varied using different datasets for fine-tuning. However, the combinations of Pub,
Cadec, and Ask achieved a higher accuracy. The last row shows the accuracy performance averaged across the ten folds.

TABLE IX
SUMMARY OF THE CV RESULTS OF MEDICAL CONCEPT NORMALIZATION ON DATASETS TWADR-L USING FINE-TUNED ULMFIT AND BERT

Note: BERT achieved the best performance. As for ULMFit fine-tuning, the performance varied using different datasets for fine-tuning. However, the combinations of Pub,
Cadec, and Twadr achieved a higher accuracy. The last row shows the accuracy performance averaged across the ten folds.

TABLE X
VALIDATION RESULTS OF MEDICAL CONCEPT NORMALIZATION ON DATASET ASKAPATIENT WITH A DIFFERENT PERCENTAGE OF OVERLAPPED DATA

Note: Similar patterns found as Tables VI and VIII.

tested using datasets in AskAPatient and TwADR-L, respec-
tively. The last columns in Tables X and XI are the results of
the same trained models, but they were tested with different
percentage of overlapped data in datasets AskAPatient and
TwADR-L, respectively.

E. Discussion

From the results of fine-tuning experiments described earlier,
we summarize the insights as follows.

1) When the model ULMFit was fine-tuned with a dataset,
such as Pubmed, Big_tweet, and Pubmed+Cadec, but the
dataset did not include the target task-specific dataset

AskApatient or TwADR-L, the accuracy of the normaliza-
tion on the same test datasets was not improved compared
to the experiments that did not fine-tune the model. As a
matter of fact, the accuracy scores were even lower in most
of the cases compared to the original experiments that did
not fine-tune the model. For example, the average accuracy
of original experiments on AskAPatient is around 65.07%,
as shown in Table VII. However, the fine-tuned results
with these datasets are from around 22.65% on dataset
Big-tweet to 67.25% on dataset Pubmed+Cadec (it is the
only one that is slightly higher than the original one), as
shown in Table VIII.
The results of the experiments on dataset TwADR-L also
has the similar pattern: the average accuracy of the original
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TABLE XI
VALIDATION RESULTS OF MEDICAL CONCEPT NORMALIZATION ON DATASET TWADR-L WITH A DIFFERENT PERCENTAGE OF OVERLAPPED DATA

Note: Similar patterns found as Tables VI and IX.

experiments is around 31.47%, as shown in Tables VII,
but the fine-tuned results with these datasets are from
26.86% on dataset Healthnews to 37.18% on dataset
Pubmed+Cadec, as shown in Table IX. The result in
dataset Pubmed+Cadec is fairly higher than the original
one, and another one that is higher than the original one
is on dataset Cadec, which is 35.31%.

2) When the model ULMFit was fine-tuned with different
datasets, the accuracy of the normalization could be sig-
nificantly different. When multiple datasets were com-
bined together to fine-tune the model, it could achieve
better normalization accuracy compared to only using the
individual dataset. For example, when the ULMFit was
fine-tuned with dataset Pubmed or Cadec, the average
accuracy on dataset AskAPatient is 52.94% and 61.59%,
respectively, and the accuracy is increased to 67.25% (i.e.,
at least 9.2% increase of the accuracy) when the model was
fine-tuned with the dataset Pubmed+Cadec that combines
both Pubmed and Cadec, as shown in Table VIII. The
same pattern also shows in the results of the model that
was tested with dataset TwADR-L, as shown in Table IX.
However, not all combined datasets achieved the same
accuracy. For example, when the model was fine-tuned
with the combined dataset Pubmed+Big_tweet, the aver-
age accuracy is only 55.17%, as shown in Table VIII. The
same pattern also exists in Table IX.

3) When the model ULMFit was fine-tuned with a combina-
tion dataset that includes the target task-specific dataset
AskAPatient or TwADR-L, the accuracy of the nor-
malization could be significantly increased compared to
the dataset that does not include the target task-specific
dataset. The accuracy is near to or higher than the accu-
racy of the model when it was fine-tuned with only the
target task-specific dataset. For example, when the ULM-
Fit was fine-tuned with Pubmed+Cadec+AskAPatient, the
average accuracy tested on AskAPatient is 78.17% com-
pared to 67.25% when the model was fine-tuned with
Pubmed+Cadec, as shown in Table VIII, and it is also
higher than 77.16% when the model was fine-tuned with
only AskAPatient, as shown in Table VII. The same pattern
also exists for dataset TwADR-L, as shown in Tables VII
and IX.

4) BERT achieved the best normalization accuracy on both
datasets AskAPatient and TwADR-L. Its average accuracy
of the normalization on dataset AskApatient is 84.91%.
Compared to 78.17%, the highest accuracy of ULMFit, it

is about 8.6% increase, as shown in Table VIII. Its average
accuracy of the normalization on dataset TwADR-L is
41.71%. Compared to 39.85%, the highest accuracy of
ULMFit, it is about 4.7% increase, as shown in Table IX.

The results of the experiments provide us concrete evi-
dences that fine-tuning could improve the performance of ma-
chine learning. For example, when the combination dataset
Pubmed+Cadec+AskAPatient was used to fine-tune the lan-
guage model of ULMFit, the average accuracy of the normal-
ization on dataset AskAPatient was increased to 78.17% from
65.07% when the model was not fine-tuned. However, the im-
provement is not guaranteed, and it may produce a negative im-
pact on the performance, as shown by the results of experiments
in this section. For example, when the language model of ULM-
Fit was fine-tuned with dataset Big_tweet, the average accuracy
of normalization on dataset AskAPatient was decreased from the
original 65.07% to only 22.65%. Therefore, carefully choosing
the dataset for the fine-tuning is very important to performance
improvement. For example, when dataset Pubmed+Cadec was
used for fine-tuning the language model, the average accuracy
is higher than any other experiment that does not include the
dataset. However, the dataset Big_tweet alone always resulted
to the lowest accuracy. When a combination dataset includes the
target task-specific dataset, the average accuracy for each con-
figuration is very close to or better than the result of experiment
that was fine-tuned only with the target task-specific dataset.
The same pattern is consistent in both datasets AskAPatient and
TwADR-L. The results of the experiments clearly demonstrated
the impact of the quality of the dataset to the performance of the
fine-tuning.

Based on the aforementioned discussion and the review of
these datasets, we summarize the observation: If a machine
learning model is pretrained with a dataset (called source dataset)
for general tasks, such as text classification, and then it is fine-
tuned with another dataset (called target dataset) for a specific
task, such as medical concept normalization, then we expect
that the target specific task is an instance of the source general
tasks. Therefore, we also expect that the fine-tuning process
would adapt the source dataset into an extended target dataset
so the source dataset and the target dataset become the subsets
of the extended target dataset. The fine-tuning would increase
the quality of the target dataset by taking advantage of the
information brought by the source dataset.

However, if a dataset that is chosen for fine-tuning the model
is not related to the target-specific task, then the fine-tuning
may produce negative performance impact since the fine-tuning
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process would consider the one as a target-specific dataset and
give it more attention/weight during training. For example,
when ULMFit model was fine-tuned only with Pubmed, the
model was tuned with disproportionately more formal medical
concepts than normal cases, which might mislead the training
and increase the bias of the trained model. The same expla-
nation can be applied to dataset Big_tweet, which distorted the
source dataset with manually added disproportionately informal
medical phrases. Therefore, when fine-tuning is applied to a
pretrained model, it is necessary to conduct an evaluation of
the target datasets to ensure they are appropriate to the target-
specific task.

BERT produced the best result due to its powerful model
and the quality of its training data. Its training data cover much
more formal and informal medical concepts than the training
dataset used for training the language model AWD-LSTM of
ULMFit. We believe the general text for training BERT may
contain most of the phrases and medical concepts in datasets
Pubmed, Healthnews, Cadec, and Big_tweet. Therefore, it has
fewer number of concepts or phrases that have used the de-
fault embedding vectors, which cannot accurately capture the
semantics of the concepts or phrases. In addition, BERT uses a
deep bidirectional contextual representation so that each word
is contextualized using both words to its left and its right.
Therefore, word embeddings produced by BERT could much
better represent the relation among words, which is critical for
medical concept normalization.

V. DATA QUALITY EVALUATION FOR MACHINE LEARNING

Since the data quality can impact the performance of a ma-
chine learning system that is built on the data, it is necessary
to evaluate the data quality systematically. There are many
approaches for data quality evaluation [37], [38], but few work
directly related to building machine learning systems. In this
section, we discuss how to systematically evaluate the data
quality to ensure the quality of machine learning, specifically
of deep learning. Based on discussions in previous sections and
other data quality research results, especially paper [17] authored
by Wang and Strong, we propose three quality attributes that
are most critical to the “fit for purposes” of deep learning.
The three quality attributes are: comprehensiveness, correctness,
and variety, the three most important quality attributes to the
performance of machine learning [39]. The definitions could
be slightly different from the definitions in other data quality
publications, including Wang and Stron [17] since our focus
is on the “fit for purpose” of building a machine learning
system.

A. Data Quality Attributes

Many examples have demonstrated the importance of the
correctness of training data for a machine learning system. One
of the examples is to use generative adversarial network (GAN)
to produce label noises into training data to easily degrade the
performance of a machine learning system [40]. It is obvious
that label noises existing in a validation dataset could produce an
overfitted model, and it could produce a misleading testing result

when they exist in a test dataset. When a machine learning model
is trained with a dataset that suffers the comprehensiveness issue,
then the trained model could suffer the generalization issue.
Therefore, the state-of-the-art language models, such as BERT
or GPT-3 [41], were trained with billions of words. Variety
emphasizes the uniqueness of each type of dataset, which is
important to ensure the confidence of the evaluation results. It is
well understood that the large overlap existing between training
data and test data could produce inflation results.

Although many quality attributes were proposed for data qual-
ity evaluation. For example, quality attributes, such as complete-
ness, timeliness, consistency, and volume, are also important
for measuring the quality of data. However, our discussion is
limited to the only quality attributes as they are important to
the quality of machine learning. The other quality attributes
either are not important to the “fit for purpose” of building a
machine learning system or can be considered as the properties
of the three quality attributes. For example, completeness can
be substituted by comprehensiveness, timeliness, and volume
are related to comprehensiveness and variety, and consistency is
part of correctness.

“Comprehensiveness” means a dataset contains all repre-
sentative samples from the population. For example, the ma-
chine learning project for the medical concept normalization
in ADR should include all medical concepts and their corre-
sponding informal phrases related to ADR. The importance of
the comprehensiveness of data to machine learning, especially
deep learning, is well understood since a deep learning model
normally includes millions of parameters that needs a large
amount of data to train it. For example, the ImageNet includes
14 million images in 22 000 categories, and it has been widely
used for training computer vision-related deep learning models.
BERT was pretrained with more than three billion words, and
it is continually retrained with more words. A deep learning
model is trained with a more comprehensive training dataset
may achieve better performance than a model that is trained
with a less comprehensive model. The problem that produced
a disparate performance for different ethnicity groups reported
in [6] was solved when a more comprehensive dataset was used
for training the machine learning model. BERT was trained with
a much more comprehensive dataset comparing to the dataset
used for training AWD-LSTM, and it might be one of the reasons
the BERT-based medical concept normalization achieved better
performance.

“Correctness” refers to the fact that a record in a dataset is
accurate and valid, and they are correctly labeled if they are
labeled records. Inaccurate or invalid data lead to data noises,
and incorrectly labeled data lead to label noises. Therefore, a
correct dataset should contain minimal label noises and data
noises. For example, the medical concepts should be collected
from reliable sources, and every mapping between a Twitter
phrase and a medical concept in a dataset should be correct. If a
dataset includes too many incorrect data items, then the model
built on the dataset could be incorrectly trained or evaluated. For
example, the problem of ChexNet [7] we discussed in Section I
was due to the incorrect assumption of the labels of unlabeled
images [8].
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“Variety” is about the coverage of a dataset of all different
cases on selected features. In this sense, the variety is a subset
of comprehensiveness, and it is a quality attribute for sampling.
The variety requires the distribution of a dataset in a feature to
be as similar as the distribution of its population. For example,
if a dataset is supposed to be normal distribution in a selected
feature with known mean and standard deviation, then the real
dataset should be normal distribution with similar mean value
and standard deviation in the same feature. The distribution
of a population could be known in advance, or they can be
approximated through simulation, sampling, or bootstrapping. If
more than 99% of data items in a dataset are collected within one
standard deviation of a population that is normal distribution in
a feature, then the dataset has low variety since it represents less
than 68% of the population. In addition, the variety requires each
validation dataset and test dataset contains a significant amount
of new data comparing to the corresponding training dataset.
The percentage of the overlapped data between a test/validation
dataset and its corresponding training dataset should be as low
as possible, such as less than 10%.

We now discuss the approach for evaluating the comprehen-
siveness, correctness, and variety of datasets using the medical
concepts normalization project as an example.

B. Check the Comprehensiveness of a Dataset

The quality attribute comprehensiveness of a dataset is cor-
related to the quality of medical concept normalization. If the
dataset for training the language model does not contain a
sufficient number of medical concepts or informal phrases that
are related to medical concepts, some of the concepts and phrases
to be tested in the normalization will not be embedded with
accurate word vectors that capture their real meanings. Those
concepts and phrases are represented with default vectors that
are generated by the general language model. For example, the
“cell” in “biology cell” could be embedded as the same word
vector as the “cell” in “cell phone.” If many medical concepts
and phrases use the default word vectors, the normalization built
on the word embedding is unlikely to achieve high accuracy, as
the normalization basically is built on the measurement of the
distance of the vectors of the informal phrase and its correspond-
ing medical concept. Each word used in social media may have
many variations and typos, and a large number of words could
be used in social media to describe a specific topic, such as ADR
discussions. Therefore, it is crucial to understand the population
so that we can measure the comprehensiveness of a dataset
to be used for building the machine learning system. Domain
knowledge is essential to understand the comprehensiveness of
the population. For the medical concept normalization example,
we first know the population includes all ADR-related concepts,
and related informal phrases are appearing in top ADR social
media and online forums over a period of time.

In order to build a comprehensive dataset for the medical
concept normalization, one may need first to collect initial
related Twitter messages (if we only consider Twitter messages)
and extract unique phrases from the messages. Then, randomly
collect more related Twitter messages and extract unique phrases

from new messages or historical messages in different sites. The
new phrases collected are compared to the phrase collection
built before. If a new phrase is found, it is added to the phrase
collection and the process continues until a few new phrases
will be found. Building comprehensive medical concepts can
be done with a domain expert to collect concepts from medical
documents, dictionaries, and medical ontology. Data augmen-
tation could also be used to produce new phrases and medical
concepts.

Dataset AskAPatient only includes 3749 unique phrases and
1036 medical concepts. Dataset TwADR-L contains only 1436
unique phrases and 2220 medical concepts, but 1947 of them do
not map to any phrase. According to the side effective resource
database SIDER 4.1,4 there are 5868 unique side effects related
to ADR. Each side effect is defined by at least one medical
concept. Therefore, the comprehensiveness of the two datasets
is fairly low. The results of the experiments presented in the
last section demonstrated that transfer learning is an effective
approach for improving the comprehensiveness of a dataset. It
“transfers” a much more comprehensive dataset that was used
for pretraining the language model into a small domain-specific
dataset to improve its comprehensiveness [4], [42].

Domain knowledge is required to evaluate the comprehen-
siveness of a dataset. One way of the evaluation is to evaluate
the data collection procedure and data sources. For example, we
may look at ImageNet as a comprehensive dataset for building
a regular image classification system. If a dataset for medical
concept normalization was produced following the procedure
we just talked about, it could be looked at as a comprehensive
dataset. When we evaluate the comprehensiveness of a dataset
for machine learning, it would be sufficient to measure the
comprehensiveness by quality rather than its quantity.

C. Check the Correctness of a Dataset

The validity and accuracy of data usually can be checked using
exploratory data analysis tools. For example, a Q–Q plot could
identify the outliers and skewness in a dataset. Checking the label
noise could be complicated, especially for a large-scale dataset,
such as AskAPatient and ImageNet. The most straightforward
way is to check the sample data manually. However, machine
learning algorithms could be used for checking label noises. For
example, machine learning methods, such as K-means clustering
and Gaussian mixture model, can be used to group the labeled
data, and then one can check the labeling of outliers and data
items located in the overlapped clustering areas for any label
noises [39].

D. Check the Variety of a Dataset

This task is to check whether a dataset has a distribution in
selected parameters as the expected distribution of the popula-
tion, and the new data in training, validation, and test datasets.
For example, dataset AskAPatient contains many duplications,
and the number of duplications of a phrase should reflect the
frequency of that phrase appearing in the collected text, such

4[Online]. Available: http://sideeffects.embl.de/
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as Twitter messages and medical forums. We expect that the
duplication pattern of the phrases in the dataset is consistent
with the usage frequency pattern in the data sources. There-
fore, simply removing the duplicated data items in the dataset
might not be an appropriate way of cleaning the dataset [19].
Instead, one can calculate the usage frequency of a phrase in the
collected data and then compare it with the duplication of the
corresponding record in the dataset. If we build a histogram of
selected phrases and then calculate its distribution of a dataset,
we can compare the distribution of the dataset to the distribution
of the population in the same phrases. The distribution of a
population is either known in advance or able to be approximated
using simulation or bootstrapping. Variety checking would also
provide us the sample size and the distribution information, such
as mean and standard deviation of the dataset, which is essential
to the statistical inference of the machine learning result.

The other property of variety that needs to be checked is the
unique data items in a dataset. Some statistical tools, such as IBM
SPSS and GNU PSPP, can be used to check the uniqueness in a
dataset based on statistical models, such as linear regression and
visualizations, such as Q–Q plot [37]. Checking variety is also
essential to the medical concept normalization. For example, it
is necessary to know how many unique medical concepts and
informal phrases exist in a dataset, as well as labeled records. If
the unique medical concepts are significantly less than expected
in a dataset, or lots of the informal phrases are not labeled, or
many medical concepts are not mapped to a phrase, then the
quality of the variety of the dataset is low, it may produce a poor
quality system.

The third property of variety needs to be checked is the overlap
in training, validation, and test datasets. Checking the overlap
among datasets is straightforward through comparing the data
items among the datasets. However, it could be complicated
for complex data, such as videos, audios, and images. In those
cases, the comparison could be conducted on the identities of
the data items or convert the data item into a value (such as
a hash value) that can be compared. As the experiment results
are shown in this article, overlap in the test dataset could cause
inflation of the system performance evaluation. Therefore, it is
necessary to calculate the overlap of datasets when one validates
a machine learning system. Although the correctness of a dataset
is important for building a machine learning system, adversarial
data are also important for testing the reliability of a system.
Adversarial data, such as label noise that are generated on
purpose using techniques, such as GAN, might be needed to be
included in test data. We consider the percentage of adversarial
data in a test dataset as one measurement of the variety.

As the results of experiments shown in the last section,
transfer learning is an effective way of improving the variety
of a dataset provided the source dataset and the target dataset
are appropriately selected.

VI. RELATED WORK

The methods used in medical concept normalization can be di-
vided into three categories: string-matching methods, rule-based
approaches, and deep learning algorithms.

String-matching methods identify concepts according to mul-
tiple resources, whereas rule-based approaches map medical
concepts based on rules. Li et al. [43] proposed a rule-based
approach that generated candidates for a given biomedical entity
using three types of rules. Kang et al. [44] proposed to use rule-
based natural language processing to improve normalization
performance, where five rules were applied to address specific
tasks, such as coordination, abbreviation, and term variation.
Some researchers proposed a solution that combines several
approaches together. For example, Dogan and Lu [45] com-
bined a string-matching method and a rule-based approach to
cross-validate the identified results.

Recently, semantic information and deep learning methods
have been proven effective in medical concept normaliza-
tion [43], especially among social media text. For example, in
order to map from social media message “I am not calm or easy”
to the medical concept “Agitate,” normalization has to take into
account the semantics of the whole message; otherwise, the text
may be mapped to the medical concept “calm.” Normalization
systems have been developed to learn and exploit the semantic
similarity between text from social media messages and medical
concepts using deep neural networks, such as CNN and RNN.

Leaman et al. introduced machine learning to the medical
concept normalization task recently [46]. The method can learn
similarities between phrases and concept names directly from
training data, which proved to be effective and has been served
as a baseline to other medical concept normalization studies.
Belousov et al. [47] proposed an ensemble system that combines
generalized linear and deep learning models trained on both
generic and target domain word embeddings in SMM4H 2017
medical concept normalization task, and the system achieved
high accuracy on the test dataset. Luo et al. [48] argued that
traditional CNN could hardly capture matching signals. They
developed a multiview learning, which included one CNN for
each view, and then the outputs from the CNNs are combined.
Their experiment was conducted on a disease dataset from a
Chinese hospital and achieved impressive accuracy.

Lee et al. [19] conducted medical concept normalization for
online user-generated text based on TwADR-L and AskAPa-
tient datasets. However, the overlapped data among test and
training data could contribute to the false improvement of the
normalization accuracy. Lee et al. [19] cleaned and recreated the
training, validation, and test datasets and removed all medical
concepts that had less than five examples. The results of their
experiments showed that CNN achieved 19.46% and 55.46%
on accuracy on TwADR-L and AskAPatient, respectively, RNN
achieved 25.30% and 65.04% on accuracy on TwADR-L and
AskAPatient, respectively. In addition, word embedding trained
on health-related Tweets messages had the most significant
impact on the classification performance [19], which showed
that fine-tuning the word embedding is a potential approach for
improving the quality of datasets.

Niu et al. [49] proposed a multitask character-level atten-
tion network to normalize standard medical concepts in so-
cial media messages. The character-level encoding scheme
can capture character-level features even in out-of-vocabulary
words, whereas the word-level morphological information in the

Authorized licensed use limited to: University of North Texas. Downloaded on August 30,2023 at 21:15:50 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: DATA EVALUATION AND ENHANCEMENT FOR QUALITY IMPROVEMENT OF MACHINE LEARNING 845

medical concept is effectively exploited to supervise the training
of an auxiliary network. They also conducted experiments on
TwADR-L and AskAPatient datasets. The results of the ex-
periments showed the proposed multitask attentional character-
level CNN achieved impressive performance on TwADR-L and
AskAPatient datasets, which were 46.46% and 84.65% on ac-
curacy, respectively [49].

Another related work of our research is the evaluation of data
quality. Data validation is an essential requirement to ensure the
quality of machine learning systems, and low-quality data may
cause problems, such as a wrong prediction or low classifica-
tion accuracy [50]. Datasets that were not adequately evaluated
can produce misleading results. Gao et al. discussed big data
quality issues, challenges, and evaluated tools for validation
and quality assurance of big data [51]. Wang and Strong [17]
developed a hierarchical framework for defining data quality
attributes in four categories: intrinsic data quality, contextual
data quality, representational data quality, and accessibility data
quality. They concluded that “high-quality data should be in-
trinsically good, contextually appropriate to the task, clearly
represented, and accessible to the data consumer” [17]. The
framework is still applied to the data for machine learning in
general. Chen et al. proposed a comprehensive and practical
framework to evaluate data quality, especially complex data,
such as knowledge graphs [15]. The focus of our work is on the
contextual data quality of datasets for deep learning. Through a
case study of medical concept normalization, we demonstrated
the impact of the quality of datasets on the performance of deep
learning. We defined three quality attributes regarding the data
comprehensiveness, variety, and correctness that would impact
the performance of deep learning.

Although many publications on data quality have been pub-
lished, the discussion on the impact of data quality on the
machine learning performance with evidence and measurement
is rare. We identified three data quality attributes that are most
important to deep learning—comprehensiveness, correctness,
and variety. Batini et al. [37] gave a comprehensive review of
the methodologies for data quality assessment and improvement,
but the application domain is limited to database applications.
Crowdsourcing is an effective and widely adopted way of col-
lecting a large amount of data for deep learning [3]. The results
reported in the paper [3] showed data with noises could still be
effective for training a deep learning model. But we believe if
noises are removed from a training dataset, the performance of
the deep learning trained with the dataset could be even higher.
Sun et al. [12] have shown the impact of the size and quality of
a dataset on the performance of deep learning.

Some preliminary work on the data quality evaluation on
domain-specific applications was reported recently [15], [39].
Evaluation of the correctness of web sources using hyperlinks,
browsing history, and the factual information provided by the
source was reported [52]. Some evaluations were conducted
based on the relationship between web sources and their infor-
mation [53]. Finding duplicates in a dataset is also an important
quality assurance task in machine learning. Machine learning
algorithms, such as gradient boosted decision tree, have been
used for detecting duplicates [54]. Data filtering is an approach

for quality assurance by removing bad data from data sources.
Nobles et al. conducted an evaluation of the completeness and
availability of electronic health record data. They identified
undesirable data in datasets using machine learning algorithms,
such as support vector machine and deep learning. Since the label
noise could reduce the performance of machine learning, one
needs to either improve the machine learning algorithm to handle
the noise or improve the quality of the data through filtering the
noise [55]. Foidl and Felderer proposed three criteria, including
data source quality, data smells, data pipeline quality to identify
the low-quality data. However, they only presented a conceptual
approach without validating it using a real-world case.

Transfer learning has been widely used for improving the
performance of machine learning across many tasks, and transfer
learning by fine-tuning pretrained neural networks outperforms
the networks that are trained from scratch on the same data [56].
It is almost a standard procedure to train a deep learning model
through fine-tuning a model that has been pretrained with a
large-scale dataset, such as ImageNet. For example, pretrained
AlexNet was fine-tuned for the classification of biomedical
images [57]–[59]. To compare the performance of fine-tuning,
CIFAR-10 and CIFAR-100 were used as source and target
datasets for the transfer learning in [60]. Recently, Lu et al.
proposed a neural architecture transfer, a fine-tuning-based
transfer learning for image classification that leveraged an ex-
isting supernet and efficiently transferred it into a task-specific
supernet, showed great scalability and practicality in different
scenarios [61]. In the text domain, ULMFit and BERT are the
two most frequently models that use the idea of fine-tuning. The
ULMFit model consists of three stages: language model pre-
trained on a general-domain corpus, language model fine-tuned
using domain-specific unlabeled data, and classifier fine-tuned
on the target task using gradual unfreezing technique [28]. BERT
is another pretrained model that can be fine-tuned with an input
to produce context-aware word embedding [29]. In order to show
the performance of different transfer learning models, Zhuang et
al. conducted an experimental study on 20 representative transfer
learning models, and its results demonstrated that appropriate
transfer learning models should be carefully selected for differ-
ent applications [62].

VII. CONCLUSION

Both the quality of a dataset and the capability of a model
could contribute on the performance of a machine learning
system. However, the research for understanding the impact of
the quality of datasets to the performance of machine learning is
just emerging. In this article, we first introduced an experimental
study to illustrate how noises in datasets could contribute to
the false performance improvement that could exist in many
machine learning systems. Then, we experimented with a trans-
fer learning approach for improving the quality of datasets and
demonstrated the true performance improvement of the machine
learning system that was trained and tested on the datasets.
However, transfer learning is not always effective for quality
improvement. Therefore, a group of guidelines were proposed
for using transfer learning, which are as follows.
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1) The datasets for fine-tuning should be related to the
target-specific task, otherwise the fine-tuning may produce
negative performance impact.

2) The fine-tuning can be used to improve data quality by
taking advantage of the information brought by the source
dataset.

3) A powerful model, such as BERT, can better capture
semantic information, thereby can be the prior model for
fine-tuning.

In order to evaluate the quality of datasets, we proposed three
data quality criteria and the approaches for measuring them. We
explained the research problem and results through studying a
machine learning system for normalizing medical concepts in
social media text with widely adopted open datasets.

In the future, we will conduct experiments on transfer learn-
ing of complex data, such as knowledge graphs, to investigate
whether a domain specific knowledge graph can be effectively
transferred with general knowledge graph, such as WikiData,
and define test adequacy criteria on the quality of datasets for
testing machine learning systems.
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[46] R. Leaman, R. Islamaj Doğan, and Z. Lu, “DNorm: Disease name normal-
ization with pairwise learning to rank,” Bioinformatics, vol. 29, no. 22,
pp. 2909–2917, 2013.

[47] M. Belousov, W. Dixon, and G. Nenadic, “Using an ensemble of gen-
eralised linear and deep learning models in the SMM4H 2017 medical
concept normalisation task,” in Proc. 2nd Workshop Social Media Mining
Health Appl., 2017, pp. 54–58.

[48] Y. Luo, G. Song, P. Li, and Z. Qi, “Multi-task medical concept normaliza-
tion using multi-view convolutional neural network,” in Proc. AAAI Conf.
Artif. Intell., 2018, pp. 5868–5875.

[49] J. Niu, Y. Yang, S. Zhang, Z. Sun, and W. Zhang, “Multi-task character-
level attentional networks for medical concept normalization,” Neural
Process. Lett., vol. 49, no. 3, pp. 1239–1256, 2019.

[50] H. Foidl and M. Felderer, “Risk-based data validation in machine learning-
based software systems,” in Proc. 3rd ACM SIGSOFT Int. Workshop Mach.
Learn. Techn. Softw. Qual. Eval., 2019, pp. 13–18.

[51] J. Gao, C. Xie, and C. Tao, “Big data validation and quality assurance—
Issuses, challenges, and needs,” in Proc. IEEE Symp. Serv.-Oriented Syst.
Eng., Mar. 2016, pp. 433–441.

[52] X. L. Dong et al., “Knowledge-based trust: Estimating the trustworthiness
of web sources,” CoRR, vol. abs/1502.03519, 2015. Accessed: 19 Apr.
2021. [Online]. Available: http://arxiv.org/abs/1502.03519

[53] X. Yin, J. Han, and S. Y. Philip, “Truth discovery with multiple conflicting
information providers on the web,” IEEE Trans. Knowl. Data Eng., vol. 20,
no. 6, pp. 796–808, Jun. 2008.

[54] C. H. Wu and Y. Song, “Robust and distributed web-scale near-dup
document conflation in Microsoft academic service,” in Proc. IEEE Int.
Conf. Big Data, Oct. 2015, pp. 2606–2611.

[55] J. A. Sáez, B. Krawczyk, and M. Woźniak, “On the influence of class noise
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