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A B S T R A C T   

Background: Biomedical sciences, with their focus on human health and disease, have attracted unprecedented 
attention in the 21st century. The proliferation of biomedical sciences has also led to a large number of scientific 
articles being produced, which makes it difficult for biomedical researchers to find relevant articles and hinders 
the dissemination of valuable discoveries. To bridge this gap, the research community has initiated the article 
recommendation task, with the aim of recommending articles to biomedical researchers automatically based on 
their research interests. Over the past two decades, many recommendation methods have been developed. 
However, an algorithm-level comparison and rigorous evaluation of the most important methods on a shared 
dataset is still lacking. 
Method: In this study, we first investigate 15 methods for automated article recommendation in the biomedical 
domain. We then conduct an empirical evaluation of the 15 methods, including six term-based methods, two 
word embedding methods, three sentence embedding methods, two document embedding methods, and two 
BERT-based methods. These methods are evaluated in two scenarios: article-oriented recommenders and user- 
oriented recommenders, with two publicly available datasets: TREC 2005 Genomics and RELISH, respectively. 
Results: Our experimental results show that the text representation models BERT and BioSenVec outperform 
many existing recommendation methods (e.g., BM25, PMRA, XPRC) and web-based recommendation systems (e. 
g., MScanner, MedlineRanker, BioReader) on both datasets regarding most of the evaluation metrics, and fine- 
tuning can improve the performance of the BERT-based methods. 
Conclusions: Our comparison study is useful for researchers and practitioners in selecting the best modeling 
strategies for building article recommendation systems in the biomedical domain. The code and datasets are 
publicly available.   

1. Introduction 

The amount of scientific articles has been growing at an unprece
dented rate in recent years. This phenomenal growth has caused locating 
relevant articles to become a non-trivial task in scientific research. 
Although academic search engines, such as Google Scholar and Micro
soft Academic, and professional academic databases, such as PubMed 
and ACM Digital Library, have been developed for academic search, it is 
still a challenge for researchers, even senior researchers, to find appro
priate literature. 

Existing studies mainly use two strategies to help users access liter
ature: retrieval and recommendation. The first strategy, such as the 
keyword-based retrievers, typically builds an inverse index to screen 
articles according to keywords given by users. Keyword-based retrievers 

have been very popular among academic search engines and academic 
databases. The second strategy usually automatically recommends the 
most similar articles to users based on their profiles or search histories. 

Although both the article retrievers and automatic article recom
menders aim to enhance the efficiency of accessing literature, their roles 
are largely different. As argued by Fiorini et al., the recommenders can 
be regarded as a complement to the retrievers [1]. Take PubMed’s 
recommender as an example (see the “Similar Article” feature on the 
navigation page of a PubMed article): when a particular article within a 
list of articles is selected (clicked upon), this indicates to the system that 
the article better matches the user’s information needs. The clicked in
formation is recorded and will be used by PubMed’s article recom
mender to suggest more articles to the user [2]. 

In addition to helping users access literature, article 
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recommendation has also been applied to other applications. For 
example, in the biomedical field, article recommendation is being used 
for: credible datasets construction [3], entity recognition and relation 
extraction from biomedical articles [4,5], screening similar biomedical 
articles for systematic reviews [6,7], automatic Medical Subject Head
ings (MeSH)1 indexing for biomedical articles [8–10], and biomedical 
article clustering [11–13]. 

In recent years, many recommendation methods or systems have 
been developed for biomedicine; for example, PubMed Related Article 
(PMRA) [14], Biomedical Research Article Distiller (BioReader) [15], 
and LitSuggest [16]. However, several questions come to mind, such as: 
what are the advantages and disadvantages of these different methods? 
Which method yields the best performance? Existing studies can not 
answer these questions since many of the existing methods are evaluated 
separately with different experimental settings or on non-standard 
datasets. In addition to these recommendation approaches, different 
text representation techniques have also been proposed to help under
stand human languages. For example, the pre-trained model (PTM) 
Bidirectional Encoder Representations from Transformers (BERT) 
[17,18] has outperformed the classical models [19,20] on many NLP 
tasks, such as text classification, information retrieval, sentiment anal
ysis, and others, and might also be the most effective method among all 
the recommendation approaches. Therefore, other questions that natu
rally arise are how would text representation models compare to existing 
approaches in carrying out this task? and what are better modeling 
strategies for the article recommendation problem given that many 
modeling strategies have been developed? 

To answer the above research questions, we conduct a formal 

evaluation and comparative study of various biomedical article recom
mendation methods. Before proceeding, we review existing studies with 
a similar purpose and summarize their contributions as well as limita
tions to highlight the significance of our study. According to our 
investigation, two studies are most relevant to our research. The first 
study presented an evaluation framework (CITREC) [21], which evalu
ated 35 similarity measures on a PubMed dataset based on a MeSH- 
based bibliometric indicator. However, the drawback of CITREC is 
that the MeSH-based indicator is not always reliable for judging article 
similarity because, for example, a recent gold-standard dataset [22] 
shows that some articles highly considered similar do not have any 
overlapping MeSH terms. Moreover, our statistics on the PubMed liter
ature database show that 14% of articles do not have the MeSH meta
data, and the number of MeSH terms assigned to biomedical articles 
varies over a large range. The second study used concept-based anno
tations on biomedical articles to determine the best-performing method 
[23]. However, the study only focused on articles with full text (many of 
the non-open access articles do not have the full text in reality), and only 
benchmarked three methods. 

Our research differs from the existing studies in two aspects. Firstly, 
we evaluate all the methods with the same experimental settings on the 
same datasets: the Relevant Literature Search Consortium (RELISH) 
dataset [22] and the Text REtrieval Conference (TREC) 2005 Genomics 
dataset [24], which we will introduce in Section 4. Secondly, we also 
evaluate different text representation techniques in addition to these 
existing methods and systems. The text representation techniques we 
evaluate include word-level representation models (e.g., fastText [25], 
BioWordVec [26]), sentence-level representation models (e.g., InferSent 
[27], Sent2Vec [28]), document-level representation models (e.g., LDA 
[29], Doc2Vec [30]), and the BERT-based models (e.g., AllenAI’s 
SPECTER [31], BioBERT [32]). 

Table 1 
Overview of similar article recommendation approaches in biomedicine. Article-oriented represents whether the approach is an article-oriented recommender. Su
pervised represents whether the approach is supervised learning-based. Method represents whether the approach is mainly published as a novel recommendation 
method. System represents whether the approach is mainly published as a novel recommendation system or has (had) provided a system based on a novel method. Code 
Available represents whether the source code is publicly available.  

Approaches Article- 
oriented 

Supervised Method System Code 
Available 

Key Features Citation Venue 

PMRA ✓ × ✓ ✓ × An approach based on a probabilistic model, it is the 
underlying method of the “similar article” 
functionality of PubMed. 

Lin and Wilbur 
(2007) 

BMC Bioinformatics 

PURE × ✓ ✓ ✓ ✓ An approach using content filtering on the set of 
articles that users can add/delete. 

Yoneya and 
Mamitsuka 
(2007) 

Genome Informatics 

eTBLAST ✓ × ✓ ✓ × A web service aiming to find similar articles using 
weighted keywords and a text alignment algorithm. 

Errami et al. 
(2007) 

Nucleic Acids Res 

PMRA-link ✓ × ✓ × × A graph-based method using PageRank and HITS on 
content-similarity networks. 

Lin (2008) BMC Bioinformatics 

MScanner × ✓ ✓ ✓ ✓ An approach that can efficiently suggest articles to 
users using a Bayesian classifier. 

Poulter et al. 
(2008) 

BMC Bioinformatics 

MedlineRanker × ✓ × ✓ × An approach using a Bayesian classifier with 
features extracted from nouns of article content. 

Fontaine et al. 
(2009) 

Nucleic Acids Res 

PBC ✓ × ✓ × × An approach developed for full-text biomedical 
articles with similarity determined by bibliographic 
coupling. 

Liu (2015) PLOS ONE 

XPRC ✓ × ✓ × ✓ An approach using term expansion based on PMRA. Wei et al. 
(2016) 

AMIA joint summits 
on translational 
science 

Crow-rank ✓ ✓ ✓ × × An approach using a learning-to-rank model 
(SVMRank) and was trained on a crowd-sourcing 
corpus. 

Lingeman and 
Yu (2016) 

Arxiv 

BioReader × ✓ ✓ ✓ ✓ An approach aiming to refine the article reading list 
for users with the training dataset consisting of two 
sets of articles. 

Simon et al. 
(2019) 

BMC Bioinformatics 

LitSuggest × ✓ × ✓ × A web server providing not only biomedical article 
recommendations, but also many other useful 
services for users, such as searching results 
downloading/sharing and personalized digest 
delivery. 

Allot et al. 
(2021) 

Nucleic Acids Res  

1 see Appendix Table A1 for all abbreviations and acronyms 
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In summary, our contributions are threefold:  

• We provide an evaluation of the article recommendation methods in 
the biomedicine domain. This evaluation of the 15 methods covers 
many existing methods and recommendation systems, as well as 
many text representation models that can be potentially adopted to 
address this problem. To the best of our knowledge, this is the first 
study providing such an evaluation for biomedical article recom
mendations. The code is available at https://github.com/carmanzh 
ang/PSA. 

• The evaluation results show that the BERT-based models signifi
cantly outperform many existing methods, e.g., PMRA. We provide 
data-side analysis for the best performers, including analysis of 
dataset bias and how fine-tuning improves the BERT-based models.  

• We analyze the evaluation methods from an algorithmic point of 
view and compare their core modeling strategies. Through a joint 
analysis with the evaluation results, we highlight the characteristics 
of better modeling strategies. 

The remaining sections are as follows: in Section 2, we review the 
most important recommendation methods and text representation 
models. In Section 3, we analyze these methods from an algorithmic 
perspective and compare their core modeling strategies. The experi
mental settings are described in Section 4, while the numerical results 
and the primary findings are presented in 5. We discuss several impor
tant aspects of our evaluation in Section 6. The conclusions are pre
sented in Section 7. 

2. Related works 

In this section, we briefly review the existing and potential methods 
for biomedical article recommendations. Depending on the scenario 
where the recommendation methods are used, they are divided into two 
categories: article-oriented (AO) methods and user-oriented (UO) 
methods. The AO recommendation methods suggest candidate articles 
to a query article based on query-candidate similarity. The UO recom
mendation methods suggest candidate articles to a user based on the 
user’s information needs, which are typically represented by two sets of 
articles, i.e., articles relevant/irrelevant to the information needs. In the 
following subsections, we review the most important AO and UO 
methods, which are itemized in Table 1. In addition, we also review 
several advanced text-processing techniques that can be potentially 
applied to biomedical article recommendations. 

2.1. Article-oriented (AO) recommenders 

The article-oriented recommenders are the most frequently 
encountered type of article recommenders. They can be found in many 
academic search engines and literature databases, such as Google 
Scholar, PubMed, ScienceDirect, ACM Digital Library, Semantic Scholar, 
and others. When a user clicks on a particular article, more articles 
similar to it will be suggested to the user on the web interface. 

In biomedicine, the AO recommendation task was originally pro
posed by National Center for Biotechnology Information (NCBI) re
searchers to highlight the article recommendation problem. To address 
this problem, they developed PMRA [14]. By assuming that the topics of 
a document are represented by terms, PMRA uses Poisson distribution to 
model whether an article is related to a specific topic. The evaluation has 
shown that PMRA is statistically better than BM25. However, the 
method does not consider the semantic variation of terms (also known as 
“term mismatch”), which is a critical issue in information retrieval and 
recommendation [33–35]. Later, Lin [36] developed a graph-based 
recommender in which graph analysis algorithms [37,38] were used 
to re-rank the recommended articles of PMRA, and experiments showed 
that the graph-based re-ranking method improved the effectiveness of 
article recommendations. 

In addition, a research team from NCBI and UC San Diego found that 
PMRA lowered the weight of terms that should be most directly related 
to an article’s topics [39]. To mitigate this gap, the team proposed 
Extended PubMed Related Citation (XPRC). XPRC extended the original 
terms with five approximate terms using a skip-gram model [40], and 
evaluation results showed that XPRC outperformed PMRA on the TREC 
2005 Genomics dataset. 

Apart from the mentioned methods, a number of web servers have 
also been developed. PURE [41] and eTBLAST [42] are the two most 
well-known ones. PURE is a content-filtering-based recommender that 
can be reused by everyone with the standalone software package. 
eTBLAST searches for similar articles in two steps. First, a pool of 400 
articles is gathered from PubMed using weighted keywords against all 
the background keywords obtained from the whole PubMed and, in a 
second step, the candidates are re-ranked by a sentence alignment 
algorithm. 

2.2. User-oriented (UO) recommenders 

The UO recommenders are very helpful for users because the two sets 
of articles (positives/negatives) should be more effective in capturing 
the user’s information needs than a single query article. In addition, the 
recommenders can suggest articles dynamically by keeping track of the 
articles that are of interest to the user. 

MScanner [43] is an early attempt. It uses all the PubMed articles as 
background information and trains a Bayesian classifier with the articles 
marked as interesting by the user. In addition, MScanner also provides 
easy-to-use web service. To make the service more efficient, it adopts 
MeSH terms and journal titles instead of the commonly used titles and 
abstracts for the recommendation. Much like MScanner, MedlineRanker 
[44] also adopts a Bayesian classifier. The main difference is that 
MedlineRanker uses more data: nouns in the title and abstract are 
selected and then are computed globally to obtain the weights of the 
terms. 

BioReader [15] and LitSuggest [16] are the most recent attempts at 
UO recommenders. BioReader can refine the article reading list for a 
user from a large collection of biomedical articles. It first cleans the 
article content with a set of text mining techniques, such as stop word 
removal and word stemming, then uses the Mann–Whitney test to select 
the top representative terms from the established document-words 
matrix. These selected terms with term weights are further adopted to 
train a recommendation model. LitSuggest is a web-based recommen
dation system created by NCBI researchers with the aim of assisting 
biomedical researchers to meet their search needs. In comparison with 
BioReader, LitSuggest not only achieves better performance, but also 
offers many useful functionalities2, e.g., model training and reuse, 
classification results downloading and sharing, and weekly digest 
delivery. 

2.3. Text representation models 

The methods mentioned above are based on term selection or term 
weighting. In other words, the accuracy of article similarity largely de
pends on how to select or weigh the most representative terms from 
article content. Such methods may be suboptimal because similar arti
cles might be under-represented if they do not contain those critical 
terms. Biomedical knowledge discovery is a complex process, the same 
knowledge can be expressed by different terms/concepts and the 
meanings of a term may vary substantially in different contexts. In this 
regard, some shallow methods, such as the terms-based methods, can 
hardly reflect article similarity adequately. 

Fortunately, the natural language processing techniques have made 
great progress recently. Many text representation models, such as BERT 

2 https://www.ncbi.nlm.nih.gov/research/litsuggest/ 
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[17], have been developed and proven to be effective in many research 
tasks. Compared to the existing AO and UO recommenders, the text 
representation models can effectively capture the semantics of text, 
which may contribute to better recommendation approaches. However, 
the performance of the text representation models has not been explored 
in relation to this task. 

To examine the performance of the text representation models, we 
consider several groups of text representation models as article recom
menders: word-level representation models, sentence-level representa
tion models, document-level representation models, and BERT-based 
representation models. In order to facilitate an in-depth comparative 
analysis, we will analyze the approaches from an algorithmic perspec
tive and conduct an intensive empirical evaluation. The involved ap
proaches, in addition to the mentioned text representation models, also 
cover some important AO and UO methods proposed previously. 

3. Modeling strategy 

In this section, to better understand the modeling strategy of 
different article recommenders, we first present a formal definition of 
the article recommendation task and then review two types of 
biomedical article recommenders based on their core modeling strate
gies: term-based recommenders and text representation-based 
recommenders. 

3.1. Problem definition 

Article recommendation aims to automatically suggest articles xc
i,∀

i ∈ [1,…,N] to the query Q according to the query-candidate similarity 
ri, where N represents the number of candidate articles involved in each 
run. The recommendation process can be formalized by Eq. 1, where the 
function φ represents a specific recommendation method. 

ri
(
xc

i |Q
)
= φ

(
Q, xc

i

)
(1)  

Depending on the recommendation scenario (AO or UO), the form of Q is 
different. In the AO recommendation, Q represents a query article xq, i. 
e., Q = xq, and the recommenders suggest the articles that are most 
relevant to it. However, the UO recommendation aims to recommend 
the most appropriate articles based on the user’s information needs, 
which are usually represented by two sets of articles Q = < {xqpos}, {

xqneg} > that are of interest {xqpos} and of no interest {xqneg} to the user. 
There are two main modeling strategies to address this problem. The 

first one focuses on how to extract key information from biomedical text, 
which has been extensively explored by existing studies. The second one 
focuses on how to effectively represent biomedical articles, such as the 
BERT models. Based on different modeling strategies, we divided the 
article recommendation approaches into two types: term-based recom
menders and text representation-based recommenders, which we will 
discuss in the following subsections. 

3.2. Term-based recommenders 

Methods for term-based recommenders are developed based on two 
assumptions: (1) terms have different weights in delivering the core 
content of articles, and (2) the weighted terms can be used for the 
recommendations. 

BM25 is one of the most popular methods under this category. In 
BM25, the terms that frequently occur in an article, but rarely occur in 
other articles, will be assigned a higher weight. As a simple but effective 
model, BM25 has been applied to many information retrieval and 
recommendation tasks. 

Another term-based method is PMRA, which was developed for 
biomedicine in particular, using an elaborated weighting technique and 
tuned hyper-parameters on a large biomedical article repository. In 
PMRA, the weight of term t in an article x is represented by the following 

equation: 

wt,x =

̅̅̅̅̅̅̅̅
idf t

√

1 +
( μ

λ

)tf t − 1exp( − (μ − λ)⋅ℓ)
(2)  

, where ℓ is the total number of terms in the article x, tf t is the term 
frequency of t within x, and idf t is the inverse document frequency of 
term t. Note that the parameters λ and μ denote the expected occurrence 
of a term when it is about the topic of x and not about the topic of the 
article, which can be determined by an extensive tuning process. With 
the weighting technique, the query-candidate similarity r can be 
calculated by the K exactly matched terms of the two articles, defined as 

r(xc|xq) =
∑K

t=1
wt,xc ∗ wt,xq (3)  

According to Eqs. 2 and 3, PMRA is very similar to BM25. Therefore, 
they also have similar advantages and disadvantages. 

XPRC extends PMRA by supplementing the most similar terms for the 
terms of the query article. Through term expansion, XPRC is expected to 
establish more weighted connections between query and candidate ar
ticles. The modified similarity score is defined as: 

wt,xc =

̅̅̅̅̅̅̅̅
idf t

√

1 +
( μ

λ

)p
∑

i
tf t,i − 1

exp( − (μ − λ)⋅ℓ)
(4)  

, where 
∑

itf t,i represents the total frequency of the approximate terms of 
the original term t (including t) in the article xc, and p is the ratio of the 
frequency of t in the query article xq to the number of terms in xq. As the 
weighting approach does not change, the similarity score of XPRC also 
can be calculated by Eq. 3. 

The above comparative analysis shows that the three recommenders 
are different. However, the modeling strategies used in these recom
menders are similar: weighting key terms. Although the modeling stra
tegies are superior in efficiency, their limitations are also evident: 
semantic relatedness of terms and the position of terms are ignored. As 
we know, semantic information is critical for many NLP tasks, including 
recommendations. Note that, although XPRC integrates a word vector 
model to obtain term semantics, the semantics used are limited. 

The user-oriented recommenders differ from the article-oriented 
recommenders in that the former first use a learning process to cap
ture a user’s preference from Q, and then apply the learned knowledge to 
prioritize candidate articles. The modeling strategy is formalized as 
follows: 
⎧
⎨

⎩

σ : Q→T
: [v1, …, vM]

⊤→[ι1, …, ιM ]

r(xc|Q) = σ(xc)

(5)  

, where M is the total number of articles in Q, σ is the learnable function 
that tries to map the query (two sets of articles) to the real information 
need (the ground truth), v represents the extracted feature vector of an 
article (e.g., key terms) from Q, and T is the ground truth, with each ι 
representing whether or not the corresponding article is interesting to 
the user. 

From Eq. 5 we know that the modeling strategies of the UO recom
menders are similar to the AO recommenders as they are both grounded 
in key information weighting or selection. Therefore, both of them 
encounter the same challenges: semantic relatedness of terms and the 
position of terms being ignored. 

The methods of term weighting and selection among different UO 
recommenders are slightly different. For example, MScanner chooses 
MeSH terms and journal titles as the key information instead of the more 
commonly used article abstracts. MedlineRanker selects nouns from 
part-of-speech annotations as the discriminative information. BioReader 
has more complex term weighting procedures. In BioReader, Term 
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Frequency-Inverse Document Frequency (TF-IDF) and the Man
n–Whitney test are combined to weight and select the top representative 
terms. 

3.3. Text representation-based recommenders 

In the text representation-based recommenders, articles are repre
sented by pre-trained embeddings, such as Word2Vec [40], and others, 
which can capture the semantic information of texts. Different from 
term-based modeling strategies, the text representation models do not 
require sophistical term selection. Instead, they focus on improving the 
quality of embedding that could effectively represent the core content of 
articles. Since every article is represented by a fixed-length embedding, 
it is straightforward to make recommendations based on the similarity of 
embeddings between articles. For AO recommendation, assuming that eq 

and ec are the embeddings of the query xq and candidate article xc, the 
semantic similarity r can be measured by the cosine similarity of eq and 
ec using Eq. 6. 

r(xc|xq) =
eq⋅ec

‖eq‖⋅‖ec‖
(6)  

⎧
⎨

⎩

σ : Q→T
: [e1, …, eM]

⊤→[ι1, …, ιM ]

r(xc|Q) = σ(xc)

(7)  

Likewise, by replacing the features of Eq. 5 with embeddings, the 
modeling strategy of the UO scenario recommendation can be formal
ized by Eq. 7. 

Eqs. 6 and 7 indicate that the modeling strategy of text 
representation-based recommenders mainly relies on embeddings. In 
other words, the quality of embeddings will largely determine the per
formance of the recommenders. Recently, many different embedding 
techniques, such as word embeddings, sentence embeddings, document 
embeddings, and BERT embeddings, have been proposed, either in the 
general domain or in the biomedical domain. All of them could be used 
to capture semantic information from biomedical articles. 

3.3.1. Word embeddings 
The word embedding models capture the semantic information at the 

word level. The models first map an article x to a word embedding 
matrix Wx = [e1, …, eℓ]

⊤ with each row representing the embedding of 
a specific word, and then use an average pooling technique to compress 
the matrix into a single d-dimensional embedding ex = 1

|Wx |

∑
e∈Wx e. 

fastText [25] and BioWordVec [26] are the representative models of this 
group. Based on the assumption that words fit well within their own 
context, the models learn word embedding through predicting the 
context words surrounding the given words with the skip-gram model 
[40]. The training objective is to maximize the following log-likelihood: 

∑S

i=1

∑

c∈C i

logp(tc|ti) (8)  

, where the context C i is the set of words surrounding ti, and S is the 
number of training samples. The probability of observing a context word 
tc given ti will be computed by their word embeddings. 

The word embedding-based approaches have the capability to learn 
word semantics to avoid the term mismatch issue in the term-based 
approaches. However, since they leverage the pooling technique, the 
word position is ignored in this process. Without the position informa
tion, the models are unable to learn global information [45,46]. 

3.3.2. Sentence or document embeddings 
The sentence or document embedding models generate article rep

resentation for the whole document, and differ from the word embed
ding models, which are at the word level. Sent2Vec [28] and InferSent 

[27] are the two most outstanding models among all the sentence 
embedding models. Sent2Vec expands word embedding into the sen
tence level. The training strategy of Sent2Vec is similar to word 
embedding models. However, the main difference is that Sent2Vec 
considers n-gram (n consecutive words) embeddings. Eq. 9 shows how to 
derive the Sent2Vec embedding from a list of n-gram embeddings R(x) of 
article x. 

ex =
1

|R(x)|

∑

e∈R(x)

e (9)  

Since n-gram partially considers word position, Sent2Vec is likely to 
yield more meaningful article embeddings. Compared to Sent2Vec, 
InferSent works in a different way; it is a supervised model trained on 
the Stanford Natural Language Inference (SNLI) [47] dataset. The 
training framework accepts two inputs (paired sentences from SNLI) and 
maps them to embeddings e1 and e2 with an encoder network, then the 
composed embeddings [e1 ⊕ e2 ⊕ |e1 − e2| ⊕ e1 ∗ e2] are passed into a 
fully connected network to obtain more effective predictions, which are 
used for backpropagation and supervised learning. Since training on 
SNLI requires a high-level understanding of language and involves 
reasoning about the semantic relationships within sentences, the model 
can yield high-quality embeddings. 

Another group of methods represents articles with document-level 
embeddings, such as LDA and Doc2Vec. In the LDA model, articles are 
represented by topical distribution, and a particular topic is represented 
by a set of weighted words. Therefore, as a bag-of-word model, LDA 
suffers from the same issue as the term-based methods. In terms of 
Doc2Vec, the training approach is highly dependent on the method of 
learning word embeddings. Doc2Vec initializes the document embed
dings randomly and uses the averaged word vectors to update the 
document embeddings. This training approach, therefore, makes it 
difficult for Doc2Vec to learn global information. 

3.3.3. BERT-based recommender 
BERT is the state-of-the-art language representation model devel

oped based on multi-layer bidirectional Transformer encoders [48]. The 
Transformer encoder is an attention structure that can effectively cap
ture semantic information from texts. Furthermore, the Transformer 
encoder also considers word position: the position is encoded as a part of 
the input for capturing in-depth semantics. Therefore, the limitations in 
the previous models, such as term mismatch and ignoring word position, 
could be largely resolved with BERT. 

Fine-tuning BERT with a siamese network Applying BERT to the 
recommendation task is straightforward: we make the recommendation 
based on the similarity between a query and a candidate article (both of 
them are represented by embeddings) by using Eq. 6 or Eq. 7. However, 
the BERT models are pre-trained on a generic corpus, meaning that they 
can hardly achieve the optimal performance for a specific task. As 
another part of BERT, fine-tuning has proven to be a promising tech
nique to obtain more effective models [48]. Therefore, it is worthwhile 
to explore BERT fine-tuning for the biomedical article recommendation 
task. However, there is no one-size-fits-all method for fine-tuning, so we 
need to design a fine-tuning strategy for different tasks. To tune a BERT 
recommender, the BERT model should accept more than one input (i.e., 
query and candidate articles). A commonly adopted approach is to 
combine them as a single input and feed them to the network. However, 
this manner will result in a very high computational overhead. To 
overcome this issue, we used Sentence-BERT (SBERT) [18], a siamese 
network architecture built on top of BERT. SBERT can efficiently learn 
high-quality text representation from logically related inputs (query and 
candidates in this task) with the input individually processed by a sia
mese network. With the SBERT architecture, we elaborate on how to 
fine-tune BERT for the two recommendation circumstances, 
respectively. 

Tuning BERT for the AO scenario In this recommendation scenario, 
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we used the triplet loss to tune the BERT model, where a valid training 
instance is a triplet: a query article xq, and two kinds of candidates xc, i. 
e., relevant candidates and the irrelevant candidates, denoted by xr and 
xu, respectively. Assuming that f is a BERT network with parameters θ, 
and fθ(∗) is the function that can project articles to embeddings, the 
training objective with the triplet loss will, as formalized in Eq. 10, try to 
minimize D(xq, xr) and maximize the D(xq, xu), where D(xq, xr) repre
sents the distance between query article xq and relevant article xr, D(xq,

xu) is the distance between query article xq and irrelevant article xu, ‖ ∗

‖2 represents the Euclidean distance, and α is a margin between the 
positive and negative pairs. Fig. 1a demonstrates how to fine-tune a 
BERT model with the triplet loss; the triplet input is first encoded to 
embeddings, then D(xq, xr) and D(xq, xu) are calculated by the Euclidean 
distance on the embeddings. Last, the loss will punish the model when 

the distance between xq and xu is less than the distance between xq and 
xr by at least α. 

L t(xq, xr, xu) = max
(
D2(xq, xr) − D2(xq, xu) + α, 0

)

= max(‖fθ(xq) − fθ(xr)‖
2
2

− ‖fθ(xq) − fθ(xu)‖
2
2 + α, 0)

(10) 

Tuning BERT for the UO scenario In the UO scenario, the fine- 
tuning process should learn the user’s information preferences from 
the relevant and irrelevant articles. In this regard, we used the 
contrastive loss L c to minimize the distance between the positives while 
maximizing that distance between the negatives. This is in line with our 
intuition because similar articles should be closer to each other than to 
the irrelevant ones. The contrastive loss used in this article is formalized 

Fig. 1. Fine-tuning BERT for better article recommenders. The triplet loss and the contrastive loss are adopted for fine-tuning BERT in the article-oriented and user- 
oriented recommendation scenarios, respectively. 

Fig. 2. The evaluation workflow for biomedical article recommendation.  
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in Eq. 11, where x(1), x(2) are the paired input (here, we do not use the 
symbols xq, xr, xu as there are no explicit query articles in the UO 
recommendation scenario), and y indicates the label regarding whether 
two articles are related; 1 means the distance should be reduced and vice 
versa. The tuning process for this scenario is depicted in Fig. 1b. Like
wise, articles are fed to the network individually to derive text embed
dings, then the embedding distances are calculated to fine-tune the 
model. 

L c(x(1), x(2)) =
1
2
[y⋅D2(x(1), x(2))

− (1 − y)⋅{max(α − D(x(1), x(2)), 0)}2
]

(11)  

4. Evaluation workflow and experimental setup 

In this section, we describe the evaluation workflow and the exper
imental settings. 

4.1. Evaluation workflow 

We evaluate the recommendation methods with the workflow 
showing in Fig. 2. The workflow consists of four stages: dataset, model, 
scorer, and evaluator. We specify the datasets DS = {DSi}

ℓd
i=1 (where ℓd is 

the number of datasets) in the first stage. The training stage aims to 
develop several recommendation models based on the datasets. 
Assuming the evaluation models are MD = {MDi}

ℓm
i=1, where ℓm denotes 

the number models; this stage will train some MD on DS if necessary. In 
the third stage, the evaluation models act as scorers and make inferences 

on the test dataset DS(t) = {DS(t)
i }

ℓd

i=1. Regarding the recommendation 
scenarios SC = {SCi}

ℓs
i=1, we adapted the workflow so that it can be used 

to evaluate the methods in two scenarios: article-oriented and user- 
oriented scenarios (ℓs = 2, accordingly). In the last stage, the perfor
mance is evaluated based on the predictions of the previous stage. After 

all the stages are finished, the evaluation metrics of the models MD on 
the datasets DS and in the two recommendation scenarios SC can be 
obtained. 

4.2. Evaluation datasets 

TREC 2005 Genomics The dataset was initially developed for 
testing retrieval experiments using defined topics and similarity judg
ments and was later adopted for testing article recommendation ap
proaches [14]. The topics are characterized by descriptive sentences (see 
Fig. 3a), e.g., Provide information about the role of the gene PRNP in the 
disease Mad Cow Disease, which not only reflect the real information 
needs of biomedical researchers but also give the reason why two 
particular articles under the same topic are similar. The similarity 
judgments are on three levels: relevant, partially relevant, and irrele
vant. However, due to the graded similarity that is established between 
an article and a specific topic, it is impossible to conduct an evaluation 
for the article recommendation task without repurposing the topic-to- 
article structured dataset to the article-to-article structured dataset 
[24]. To this end, we select partial articles under each topic as queries 
and leave the others as candidates. 

RELISH RELISH is a large dataset aimed at benchmarking biomed
ical similar article recommenders specifically. It was curated via crowd- 
sourcing, with more than 1,500 biomedical scientists from various 
research areas participating in the annotation process. Collectively, over 
180,000 biomedical articles have been included. In RELISH, a query 
article is associated with multiple candidates, and each candidate is 
tagged with one of the three similarity scores: relevant, partially rele
vant, and irrelevant (see Fig. 3b for the structure of RELISH). Regarding 
the quality, the dataset has been rigorously evaluated. For example, the 
authors show that there is no systematical bias observed among anno
tators with different levels of background, and the scores judged by 
different annotators are quite stable [22]. 

To benchmark the learnable AO methods (e.g., BERT), we split the 

Fig. 3. The structure of the evaluation datasets.  
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queries of the two datasets into the standard training/validation/test 
sets following the ratio of 8:1:1. However, benchmarking UO methods 
requires a learnable model to capture the user’s information prefer
ences. To facilitate this process, we split the candidate articles under each 
query into the training/validation/test folds with the same ratio of 8:1:1 
for training, validation, and evaluation. 

4.3. Methods in the comparative study 

The comparative study covers 15 methods, which are divided into 
two categories: term-based recommenders and text representation- 
based recommenders. The first category includes three AO methods 
and three UO methods developed for biomedical article recommenda
tions. Among these, PMRA and MScanner have been used to provide 
literature recommendations for a wide range of biomedical researchers. 
Note that we eliminated a recently created term-based method, Lit
Suggest [16], from the comparison because the implementation details 
are not provided. The second category corresponds to the text 
representation-based methods that can serve as both the AO and UO 
recommenders. In this category, we evaluate nine text representation 
models, including two word embedding methods, three sentence 
embedding methods, two document embedding methods, and two 
BERT-based methods, which make recommendations based on different 
levels of the semantics of articles. All the evaluation methods used in this 
article are itemized as follows. 

4.3.1. Term-based recommenders 
BM25 Although many advanced computational models have been 

developed in recent decades, BM25 remains a strong baseline in infor
mation retrieval or recommendation. For comparison, we used the 
default hyper-parameters k1 = 1.5,b = 0.75, and ∊ = 0.25. 

PMRA PMRA is a probability model proposed by [14]. It has been 
integrated into PubMed as an important feature to power users’ 
searching experience (see “Similar Article” in the navigation page of a 
PubMed article). For comparison, we used the optimized parameters λ =

0.022 and μ = 0.013 suggested by Lin and Wilbur [14]. 
XPRC Extended from PMRA, XPRC expands terms with an additional 

five similar terms using pre-trained word vectors. To replicate this 
method, we used BioWordVec [26] as the pre-trained word vectors. 

MScanner MScanner is a Bayesian classifier-enabled article recom
mender. The web service embedded in MScanner can prioritize articles 
efficiently by using MeSH terms and journal titles. 

MedlineRanker Different from MScanner, MedlineRanker uses 
nouns from the title and abstract to build the recommendation model. 

BioReader The method uses document-word matrices and the 
Mann–Whitney test to select the top representative terms, then uses 
supervised learning algorithms to build the recommendation model. We 
replicated BioReader based on the author’s implementation. Note that 

multiple learning algorithms are provided in their implementation. We 
reported the performance of BioReader with the support vector machine 
(SVM) implementation because the setup shows better performance 
than the other three top performers on RELISH. 

4.3.2. Text representation-based recommenders 
Word Embedding One of the basic methods for measuring article 

similarity is averaging over word embeddings. Here, we considered two 
popular pre-trained word embeddings: fastText [25] and BioWordVec 
[26]. In terms of the experimental settings, we used 300d fastText and 
200d BioWordVec. 

Sentence Embedding We evaluated the two sentence embeddings, 
e.g., InferSent [27] and Sent2Vec [28], which are popular models for 
solving many biomedical problems, such as evidence-based clinical data 
mining [49] and biomedical literature understanding [50]. Note that we 
considered two versions of Sent2Vec, referred to as BioSentVec (trained 
on the PubMed corpus) and WikiSentVec (trained on the Wikipedia 
corpus). 

Document Embedding We evaluated LDA [29] and Doc2Vec [30] 
for this task as both can generate document-level embeddings for articles 
of arbitrary length. To train the models, 2% of the PubMed Central ar
ticles (approx. 48 k full-text articles) were randomly selected as the 
training corpus, and the number of topics was set to 64 for both models. 

BERT Embedding We considered two pre-trained BERT models: 
AllenAI’s SPECTER [31] and BioBERT [32], which have been widely 
used in many academic text processing tasks. SPECTER was trained on a 
massive amount of academic articles (Semantic Scholar open corpus3), 
with citation relationship integrated to enhance its ability in down
stream tasks, such as scholarly recommendation. BioBERT is a domain- 
specific model, which was pre-trained on large-scale biomedical data. To 
efficiently tune these models, we adopted the SBERT architecture (see 
Fig. 1) to speed up the training/inference process. In terms of the 
parameter settings, we set the maximum epochs to 3, batch size to 16, 
and the learning rate was set to 1e-5 as suggested by Sun et al. [51]. The 
first 1,500 training steps were used for warming up the model. We 
evaluated the model every 3,000 steps and saved the best model when 
the validation loss reached the minimum. We used the maximum input 
length of 200 due to our GPU memory constraints. It should be pointed 
out that the mapping function σ (see Eq. 5 and Eq. 7) is indispensable for 
the development of the UO methods, here we adopted SVM as the 
mapping function. Note that we did not fine-tune the BERT models on 
the TREC dataset because it is hard to obtain high-quality training 
samples due to the topic-article structure of the dataset. 

Table 2 
Experimental results of article-oriented article recommenders on the RELISH dataset  

Method Group Method MAP@5 MAP@10 MAP@15 NDCG@5 NDCG@10 NDCG@15 AVG. 

- Random 79.33 77.22 75.41 80.70 77.67 76.40 77.79 
Term-Based Method XPRC 84.34 81.98 80.59 85.32 82.43 81.78 82.74  

BM25 88.91 86.72 84.54 89.48 87.39 86.21 87.21  
PMRA 90.30 87.57 85.75 90.95 88.40 87.45 88.40 

Word Embedding fastText 85.75 82.81 81.79 86.79 83.79 83.12 84.01  
BioWordVec 89.84 86.51 84.67 89.90 86.67 85.53 87.19 

Sentence Embedding InferSent 85.21 82.16 80.41 86.56 83.31 82.35 83.33  
WikiSentVec 87.92 85.23 83.40 88.65 85.74 84.81 85.96  
BioSentVec 90.76 88.10 86.16 90.05 87.76 86.89 88.29 

Document Embedding LDA 85.44 82.66 80.36 86.51 82.91 81.31 83.20  
Doc2Vec 86.23 84.74 83.39 86.55 84.70 84.09 84.95 

BERT BioBERT 88.14 85.81 83.90 88.97 86.29 85.10 86.37  
SPECTER 92.27 90.00 88.36 91.47 89.12 88.42 89.94 

BERT with fine-tuning BioBERT 94.11 92.10 90.64 92.85 90.72 89.93 91.73  
SPECTER 93.76 91.65 90.39 93.40 91.20 90.52 91.82  

3 https://api.semanticscholar.org/corpus 
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4.4. Evaluation metrics 

We used the standard ranking metrics MAP and NDCG for perfor
mance assessment as article recommendation is a typical ranking 
problem. In the two evaluation datasets, the similarities are graded into 
three levels, we followed two existing studies [14,39] to transform the 
three levels to the corresponding similarity scores: 0, 1, and 2, and re
ported the top-N performance of MAP and NDCG in percentages with N 
set to [5, 10, 15]. Note that we considered the relevant and partially 
relevant levels as the same similarity score in calculating MAP (i.e., 
similarity scores are 1), as prior studies [14,39] did. However, we 
considered them separately in calculating NDCG because the two simi
larity levels will lead to different cumulative gains. 

5. Results and analysis 

Tables 2–5 present the evaluation results of all the methods in the 
article-oriented and user-oriented scenarios, and on the TREC Genomics 
and the RELISH datasets, respectively. We summarized our observations 
and conducted the analysis from five aspects. 

5.1. Term-based modeling strategies 

In Table 2 and Table 3, we observed that BM25 outperformed several 
text-representation models (e.g., LDA, Doc2Vec), and even showed 
comparable performance with the BERT-based models (e.g., BioBERT, 
SPECTER) on RELISH. This is not surprising because BM25 is a strong 
baseline and has been broadly adopted in information retrieval and 
recommendation systems. 

Table 3 
Experimental results of article-oriented article recommenders on the TREC Genomics dataset.  

Method Group Method MAP@5 MAP@10 MAP@15 NDCG@5 NDCG@10 NDCG@15 AVG. 

- Random 31.54 30.74 29.28 43.43 44.66 43.86 37.25 
Term-Based Method XPRC 49.33 47.31 45.18 59.21 58.46 58.06 52.93  

BM25 46.48 44.53 41.89 58.18 56.68 55.25 50.50  
PMRA 47.83 45.40 42.38 59.50 57.64 55.85 51.43 

Word Embedding fastText 50.05 47.18 44.61 60.81 57.96 56.47 52.85  
BioWordVec 50.89 48.57 46.25 61.28 59.64 58.77 54.23 

Sentence Embedding InferSent 48.16 45.00 42.45 58.46 56.32 55.15 50.92  
WikiSentVec 55.04 52.06 49.30 64.19 61.72 60.38 57.11  
BioSentVec 56.53 53.46 50.78 65.74 63.31 62.28 58.68 

Document Embedding LDA 38.59 38.05 36.23 51.46 51.11 50.19 44.27  
Doc2Vec 43.49 41.77 39.30 54.67 53.10 51.73 47.34 

BERT BioBERT 52.75 48.92 45.97 63.35 60.64 58.67 55.05  
SPECTER 54.71 50.85 48.41 62.84 60.87 60.13 56.30  

Table 4 
Experimental results of user-oriented recommenders on the RELISH dataset.  

Method Group Method MAP@5 MAP@10 MAP@15 NDCG@5 NDCG@10 NDCG@15 AVG. 

- Random 78.14 76.32 75.72 80.73 77.65 76.71 77.55 
Term-Based Method MScanner 87.19 84.92 83.73 87.16 84.48 83.21 85.12  

MedlineRanker 88.69 86.33 85.32 88.10 85.60 84.36 86.40  
BioReader 87.84 85.65 90.48 88.69 85.18 87.02 87.48 

Word Embedding fastText 88.88 86.73 85.23 88.35 85.79 84.13 86.52  
BioWordVec 89.24 87.17 86.00 88.59 86.04 84.58 86.94 

Sentence Embedding InferSent 89.17 87.11 86.36 88.57 86.05 84.93 87.03  
WikiSentVec 90.09 87.97 86.83 89.16 86.81 85.55 87.74  
BioSentVec 91.03 89.15 88.16 89.89 87.63 86.65 88.75 

Document Embedding LDA 86.22 83.70 83.43 86.46 83.51 82.86 84.36  
Doc2Vec 88.29 85.89 84.64 87.99 85.12 83.62 85.93 

BERT BioBERT 89.56 87.01 86.17 89.71 87.38 86.70 87.76  
SPECTER 90.65 88.49 87.54 90.52 88.66 87.78 88.94 

BERT with fine-tuning BioBERT 90.81 88.59 88.04 90.81 88.88 88.20 89.22  
SPECTER 90.91 88.66 88.23 90.66 88.74 88.09 89.22  

Table 5 
Experimental results of user-oriented recommenders on the TREC Genomics dataset.  

Method Group Method MAP@5 MAP@10 MAP@15 NDCG@5 NDCG@10 NDCG@15 AVG. 

- Random 19.50 20.17 16.97 25.84 27.21 25.12 22.47 
Term-Based Method MScanner 40.25 39.23 37.91 46.30 47.04 46.95 42.95  

MedlineRanker 51.80 47.92 45.67 53.97 52.98 52.10 50.74  
BioReader 52.71 52.47 50.95 58.68 60.85 59.70 55.89 

Word Embedding fastText 54.24 53.05 52.14 61.50 61.18 61.28 57.23  
BioWordVec 57.77 55.00 52.92 64.78 64.51 63.06 59.67 

Sentence Embedding InferSent 51.40 50.61 49.11 56.47 57.88 57.63 53.85  
WikiSentVec 55.74 53.53 52.80 60.59 59.94 60.64 57.21  
BioSentVec 59.95 58.88 57.05 64.67 65.82 65.73 62.02 

Document Embedding LDA 45.90 45.90 43.66 51.92 54.72 52.81 49.15  
Doc2Vec 47.96 46.93 45.95 51.55 52.87 52.57 49.64 

BERT BioBERT 52.88 53.06 51.19 55.25 58.72 58.90 55.00  
SPECTER 55.98 53.30 51.13 62.36 59.47 58.45 56.78  
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In terms of other term-based AO recommenders, PMRA out
performed BM25 on both datasets, which is aligned with previous 
findings [14,39]. As per the methodologies compared in Section 3, the 
advanced term weighting technique and the exhaustively tuned hyper- 
parameters enable PMRA to be a better performer than BM25 on 
biomedical articles. 

We also found that XPRC did not perform well compared to PMRA on 
RELISH. However, it showed better performance than PMRA on the 
TREC dataset. By analyzing the extended terms from the two datasets, 
we found that the extended terms for the TREC dataset were slightly 
more discriminative than the extended terms for RELISH. Such differ
ences might be the reason that made XPRC perform better on the TREC 
dataset. 

When further looking at Table 2 and Table 3, we observed the per
formance gaps between the term-based methods and the text 
representation-based models on the RELISH dataset are smaller than 
those on the TREC dataset. This difference might also be caused by the 
domain coverage of the datasets. Since the TREC dataset only covers the 
Genomics domain (vs. RELISH, which covers the full spectrum of 
biomedicine domains), the candidate articles, regardless of whether 
they are relevant or irrelevant articles, should have many genomics- 
related terms in common. This makes the term-based methods less 
discriminative. 

Table 4 and Table 5 show the results of the user-oriented bench
marks. The findings of the benchmarks are similar to that of the article- 
oriented benchmarks. For example, the three web-based systems 
(MScanner, MedlineRanker, and BioReader) are mainly inferior to many 
text representation models, which suggests that the advanced repre
sentation techniques can help build better recommendation systems, 
although some of the web-based recommendation systems have already 
received good feedback from users. As discussed in the Modeling Strategy 
section, the three recommendation systems are all grounded in term 
weighting/selecting, and indeed they have the same limitations (e.g., 
term mismatch and missing term positions) as the evaluated article- 
oriented recommenders. Additionally, among the three recommenders, 
MScanner performed the worst and BioReader showed better results in 
general than the others on both datasets. The reason MScanner did not 
perform well is that, in order to quickly return recommendations from 
the massive number of PubMed articles, only the journal titles and MeSH 
terms were used, meaning that limited knowledge was used from the 
input for the recommendation. Regarding BioReader, it embedded a set 
of feature engineering techniques to select the most significant terms, 
which leads to better performance. 

5.2. Text representation-based modeling strategies 

Although some term-based methods show decent performance, they 
are suboptimal compared to several text representation-based models (e. 
g., Sent2Vec, BERT). For example, in Table 2, there are four text 
representation-based models that outperformed PMRA on RELISH with 
the maximum margin being 3.82%. In Table 3, there are five text 
representation-based models that outperformed XPRC on the TREC 
dataset with the maximum margin being 5.75%. In Table 4, there are six 
text representation-based models that outperformed BioReader on the 
RELISH dataset with the maximum margin being 1.74%. In Table 5, 
there are five text representation-based models that outperformed Bio
Reader on the TREC dataset with the maximum margin being 6.13%. 
The superiority of Sent2Vec and the BERT models can be explained by 
the appropriate modeling strategy of the representation models. By 
using neural networks and advanced techniques – e.g., attention me
chanics, word position encoding, skip-gram, and n-gram word encoding 
– the models can learn semantics very well from global information of 
articles while considering word position, which largely resolved the is
sues faced by term-based methods. The superiority also indicates that 
the in-depth capture of semantics from articles is an essential charac
teristic of better modeling strategies. 

Additionally, we also have several findings by comparing different 
types of text representation models. First, LDA and Doc2Vec show the 
worst performance overall. As we know, LDA is essentially a bag-of- 
word model, which makes LDA suffer from the same issue as the term- 
based methods. Doc2Vec updates article embeddings with averaged 
word vectors; this training technique makes it difficult for Doc2Vec to 
learn global information. Second, InferSent achieved comparable per
formance with LDA and Doc2Vec on the two datasets. This is surprising 
as this model has been shown to generalize well on many tasks. A deeper 
analysis shows that the poor performance may be caused by the training 
dataset. InferSent was trained on SNLI, which is a dataset consisting of 
image captions from the web. Therefore, the domain knowledge be
tween SNLI and biomedical literature differs significantly, and such a 
knowledge gap could explain why InferSent did not perform well on the 
biomedicine datasets. Third, the word embeddings, such as fastText and 
BioWordVec, achieved more moderate results than BERT and Sent2Vec 
in most scenarios. This conclusion is coincident with existing studies 
[52], as using word embeddings with the pooling technique has inherent 
limitations; e.g., the information loss issue and not taking account of 
term positions. 

Furthermore, the fine-tuned BERT models (e.g., SPECTER, BioBERT) 
outperformed many strong baselines on RELISH. For example, the fine- 
tuned SPECTER improved PMRA by 3.42% in terms of the AVG. metric 
in Table 2). Such remarkable improvement indicates that the cutting- 
edge BERT models might be the optimal methods for the biomedical 
similar article recommendation task. 

5.3. Data aspect modeling strategies 

In this subsection, we present additional findings from the data 
perspective that are also critical for building a better article 
recommender. 

First, the domain-specific models, such as BioSentVec and Bio
WordVec, outperformed their generic equivalents (e.g., InferSent, 
WikiSentVec, and fastText). This conclusion was strongly supported by 
the BioSentVec model, which outperformed most methods and even 
outperformed the original BERT models on the TREC dataset, as shown 
in Table 3 and Table 5. We believe this is due to the divergence of 
domain knowledge learned in these models. BioSentVec and Bio
WordVec were trained specifically on biomedicine datasets (e.g., 
PubMed literature data, and clinical notes from the MIMIC-III Clinical 

Fig. 4. The distribution of journal descriptor (JD) frequency in RELISH. JDs 
were detected from the test set of RELISH using the JDI tool. The horizontal axis 
represents JD orders ranging from [1, 122], and the vertical axis represents 
journal descriptor frequency (the number of articles falling into a particular 
journal descriptor). 
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database), enabling them to learn more domain knowledge (e.g., 
biomedical entities/concepts) than their generic equivalents [53,54]. 
The above conclusion can also be demonstrated by the InferSent model, 
which performs well on a variety of tasks [27]. However, our evaluation 
results indicate that InferSent fails to achieve the expected performance 
as the other sentence-embedding models. The reason, as aforemen
tioned, is that SNLI contains little biomedicine knowledge. Also, the 
performance gap between MScanner and MedlineRanker can prove this 
inference. The two models are very similar except for the information 
used – MedlineRanker uses the full abstract and it supposedly has ob
tained more domain knowledge than MScanner. 

Second, we found SPECTER outperformed BioBERT in all the sce
narios, although both SPECTER and BioBERT have learned considerable 
domain knowledge4. The main difference between SPECTER and Bio
BERT is that SPECTER incorporated citation relationship to improve 
document-level representations [31], indicating the effectiveness of the 
citation information in determining article relevance [55]. The above- 
discussed findings demonstrate that integrating more knowledge from 
data is also a useful modeling strategy for enhancing article 
recommenders. 

5.4. Fine-tuning the pre-trained models for performance improvement 

As can be seen from Table 2 and Table 4, BERT with fine-tuning 
significantly outperformed the original BERT models on RELISH, 
meaning that fine-tuning the pre-trained models is an effective strategy 
for performance improvement, aligned with the conclusion from [53]. 
To better understand how fine-tuning improved the pre-trained models, 
we used the Journal Descriptor Indexing (JDI) tool [56] to decompose 
the test instances of RELISH into the individual research disciplines of 
biomedicine. Under this experimental setting, we then examined the 
difference in model performance between the fine-tuned BERT and the 

original BERT models across disciplines5. 
The JDI tool was developed by the National Library of Medicine 

(NLM) for categorizing biomedical text. JDI has been successfully used 
in many applications, such as automatic indexing of biomedical articles 
[57] and author name disambiguation [58]. For an article, JDI can index 
it with a ranked list of Journal Descriptors (JDs), which correspond to 
biomedicine disciplines. In this research, we extracted the top three 
disciplines for each PubMed article and aggregated the articles into their 
respective disciplines. After this step, the RELISH test set was decom
posed to 122 discipline-specific datasets (see Fig. 4) containing varying 
numbers of articles. Then, we evaluated the performance of the BERT 
recommenders for each JD (discipline). 

Fig. 5 shows the performance variances of the BERT models via fine- 
tuning, where the vertical bars represent the performance gaps between 
the fine-tuned models and the original models, while the bars over the 
horizontal axis indicate a positive effect of fine-tuning. The horizontal 
axis is the discipline order, with discipline ranked by frequency (the 
number of articles) in descending order (see Fig. 4). From Fig. 5, we 
found that most negative bars of MAP@15 appear with higher JD orders, 
while, for smaller orders, the bars are mainly above the horizontal axis. 
When looking at the JD distribution shown in Fig. 4, we draw the 
conclusion that fine-tuning improves the performance of larger disci
plines but might not affect the performance of small disciplines. In some 
situations, fine-tuning might even distort the model performance of 
small disciplines. In other words, whether fine-tuning can improve the 
BERT models or not largely depends on the size of the available training 
samples [53]. We refer to this as performance bias as it shows unbalanced 
performance improvements across disciplines. The performance bias is 
critical for recommenders in the production environment because rec
ommenders with the issue will offer diverse searching experiences for 
users in different research areas. 

Fig. 5. Performance comparison (MAP@15) of the BERT models after/before fine-tuning, the horizontal axis represents the journal descriptor orders shown in Fig. 4, 
and the vertical axis is the performance gaps between fine-tuned model and the original model. Bars above the horizontal axis suggest fine-tuning has a positive effect 
on the BERT models, and vice versa. 

4 A portion of SPECTER’s training data is biomedical articles. 
5 Note that we did not provide the same analysis for the TREC dataset as it 

only focuses on the Genomics discipline while RELISH contains the full spec
trum of biomedicine disciplines. In addition, it is also hard to obtain meaningful 
training samples for fine-tuning from the TREC dataset, as clarified in Section 4. 

L. Zhang et al.                                                                                                                                                                                                                                   



Journal of Biomedical Informatics 131 (2022) 104106

12

5.5. Dataset bias analysis 

Inspired by the performance bias, we further investigated whether 
there is a significant bias in the RELISH dataset in terms of biomedicine 
disciplines. The creators of the RELISH dataset found that RELISH may 
have a slight over-representation of those publications related to the 
high-throughput omics technologies [22]. They used a qualitative 
approach, i.e., word cloud, to put more emphasis on diversity instead of 
numerical distribution. However, how the bias is distributed across all 
biomedicine disciplines remains unclear. Uncovering the disciplinary 
bias of the RELISH dataset should be important as it can help others to 
recognize the limitations of RELISH and, more importantly, to better 
understand in which disciplines the RELISH-based article recommenders 
may perform suboptimally. 

To quantify the disciplinary bias, we compared the JD distribution of 
RELISH to that of PubMed. We used the JDI tool to extract the disciplines 
from all the PubMed articles6. The discipline distribution is shown in 
Fig. 6; we can see that some disciplines, such as Genetics, Cell Biology, 
and Molecular Biology, pinpointed in this plot, show significant de
viations from the background distribution, which is aligned with the 
conclusion in [22]. In addition to the three disciplines, our analysis also 
uncovers the bias issue in more disciplines, such as Endocrinology, Or
thopedics, Cardiology, and Dentistry. 

6. Discussion 

6.1. Better modeling strategies 

Our evaluation shows that the recommendation methods with 
different modeling strategies achieved various levels of performance. 
However, several common findings can still be identified. These findings 
collectively highlighted the characteristics of better modeling strategies. 

The term-based methods developed fine-grained term weighting/ 
selection techniques, e.g., term weighing in PMRA and noun selection in 
MedlineRanker. These measures are indeed helpful for improving the 
effectiveness of recommenders. However, the modeling strategies of the 
group of methods face the same limitations: semantic relatedness and 

the positions of terms are not seriously considered. The limitations 
restrict the term-based methods from deeply mining the relationship 
between articles, while this aspect is critical for achieving better 
recommendation performance. Fortunately, the text representation- 
based models can handle such issues appropriately. With advanced 
techniques – e.g., attention mechanics and word position encoding, the 
modeling strategies enable the recommenders to capture the semantics 
of articles. 

Additionally, another helpful modeling strategy learned from our 
analysis is to integrate more knowledge from data. BioSentVec and 
BioWordVec with more integrated domain knowledge outperformed 
their equivalents (WikiSentVec and fastText) trained on the generic- 
domain corpus. SPECTER with citation relationship integrated also 
outperformed another BERT model. The findings demonstrate that, in 
addition to improving recommendations from an algorithmic perspec
tive, incorporating more knowledge from a data perspective is also a 
valuable modeling strategy that can effectively boost biomedical article 
recommenders. 

6.2. Method contributions and potential value for future works 

This article evaluated a variety of biomedical article recommenda
tion methods, covering many existing approaches and additional text 
representation models, and spanning two recommendation scenarios. In 
our evaluation, we demonstrated that many text representation models 
can be used to develop effective recommenders. We thoroughly 
analyzed the evaluation methods and compared their limitations and 
strengths from an algorithmic perspective. 

Furthermore, we demonstrated that fine-tuning can improve the 
BERT models in both article-oriented and user-oriented recommenda
tion scenarios. The tuned BERT models outperformed existing ap
proaches by remarkable margins (e.g., approximately 3.4% 
improvements over PMRA on RELISH); such huge improvements and 
recommendation methods can have at least two implications for future 
works. First, the promising methods may benefit worldwide biomedical 
scientists if integrated into PubMed. A query analysis for PubMed 
showed that there were approximately 2.5 million users accessing 
PubMed and 3 million searches issued on a working day in 2017 [59]. As 
such, improving article recommendations for PubMed is becoming a 
crucial topic given the considerable number of users. Second, because 
the fine-tuning technique and most text representation models are 
generic, they can be effortlessly scaled to other academic digital li
braries/literature databases to power the literature access experience for 
a wide range of researchers beyond biomedicine. 

Additionally, the methods benchmarked here are helpful for identi
fying better modeling strategies, e.g., mining more semantics and inte
grating more domain (or externally compiled) knowledge, which would 
be of great interest for many other research problems and applications 
relying on an understanding of biomedical articles, such as screening 
biomedical articles for systematic reviews [6,7], biomedical article 
clustering [11–13], automatic MeSH indexing [8–10], and data curation 
in biomedicine [3]. The modeling strategies are valuable for building 
more effective methods used in these tasks. 

6.3. Future improvements 

The RELISH dataset is of high quality in terms of annotation accu
racy. However, in terms of discipline distribution, clear deviations were 
found. This issue may result in poor recommendation performance for 
the under-represented disciplines. Therefore, future works can shift 
more attention to building a large unbiased dataset for this task. 

This study investigated similar article recommendations primarily 
from a semantic perspective. However, the similarity may not be 
entirely determined by a single perspective/factor. Other perspectives 
are also worth exploring; for example, whether an article is cited by 
another one, whether both articles are published in the same journal or 

Fig. 6. Journal descriptor (discipline) distribution (%) in RELISH and the 
whole PubMed. Different from the x-axis of Fig. 4, the x-axis represents the 
ranked JD of the whole PubMed literature database. Compared to PubMed’s JD 
distribution, RELISH’s distribution shows clear deviations from the real 
distribution. 

6 The 2019 baseline version, which contains nearly 30 million articles 
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written by the same author. Such perspectives offer new interpretations 
for article similarity beyond the content information. 

We argue that another way to improve this task is to integrate user 
intelligence [1]. When the query article and a certain candidate article are 
frequently viewed by a large group of users, it may imply that the query 
and the candidate articles are highly related. In this sense, future works 
can consider mining user intelligence from user behavior data, such as 
query logs [60], to power article recommendations. 

6.4. Limitations 

The evaluation presented in this article was only carried out in the 
offline mode (on evaluation datasets); thus, it may not reflect the actual 
performance of the recommendation methods in realistic scenarios. The 
actual performance can be measured by conducting a large-scale A/B 
test in the online mode. Unfortunately, it is hard for us to conduct such 
experiments on a mature literature system. Despite this limitation, we 
believe this work still makes valuable contributions. The intensive 
evaluation and the in-depth analysis of the recommendation approaches 
will provide insights for future studies. 

7. Conclusion 

This study evaluated 15 article recommendation methods in 
biomedicine. The evaluation methods include not only existing methods 
but also advanced text representation techniques, such as BERT. The 
evaluation results showed that many text representation models out
performed the existing recommendation methods and systems. In 
addition to the empirical evaluation, we also compared these methods 
and analyzed their limitations from an algorithmic perspective. All these 
efforts helped us to identify better modeling strategies for biomedical 
article recommendations. Furthermore, we provided data-aspect anal
ysis, e.g., dataset bias in terms of discipline distribution. The analysis is 
helpful for others to better understand the evaluation datasets and the 
best-performing methods, which will eventually benefit article recom
mendation research. In the future, we intend to develop an effective 
method/criterion that can be used for online article recommendations 
and performance evaluation. 
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