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Abstract
Interest in assessing research impacts is increasing due to its importance for informing 
actions and funding allocation decisions. The level of innovation (also called “innovation 
degree” in the following article), one of the most essential factors that affect scientific lit-
erature’s impact, has also received increasing attention. However, current studies mainly 
focus on the overall innovation degree of scientific literature at the macro level, while 
ignoring the innovation degree of a specific knowledge element (KE), such as the method 
knowledge element (MKE). A macro level view causes difficulties in identifying which 
part of the scientific literature contains the innovations. To bridge this gap, a more fine-
grained evaluation of academic papers is urgent. The fine-grained evaluation method can 
ensure the quality of a paper before being published and identify useful knowledge con-
tent in a paper for academic users. Different KEs can be used to perform the fine-grained 
evaluation. However, MKEs are usually considered as one of the most essential knowledge 
elements among all KEs. Therefore, this study proposes a framework to measure the inno-
vation degree of method knowledge elements (MIDMKE) in scientific literature. In this 
framework, we first extract the MKEs using a rule-based approach and generate a cloud 
drop for each MKE using the biterm topic model (BTM). The generated cloud drop is then 
used to create a method knowledge cloud (MKC) for each MKE. Finally, we calculate the 
innovation score of a MKE based on the similarity between it and other MKEs of its type. 
Our empirical study on a China National Knowledge Infrastructure (CNKI) academic lit-
erature dataset shows the proposed approach can measure the innovation of MKEs in sci-
entific literature effectively. Our proposed method is useful for both reviewers and funding 
agencies to assess the quality of academic papers. The dataset, the code for implementation 
the algorithms, and the complete experiment results will be released at: https://​github.​com/​
haihu​a0913/​midmke.
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Introduction

Scientific literature, describing new ideas and consolidating existing concepts in the sci-
ences, is essential to understanding advances in different fields. Measuring the innova-
tion in scientific literature is vital from both a management and a policy standpoint (Funk 
& Owen-Smith, 2017). Innovation in scientific literature directly reflects the quality and 
potential value of both research and good researchers. Nevertheless, measuring the qual-
ity, especially the level of innovation in scientific literature, could be a valuable capability, 
though intractable.

Recently, there is growing interest in measuring the innovation degree of academic lit-
erature. Scholars have used various methods for measuring innovation in scientific litera-
ture. Approaches used can be summarized into two categories: metadata-based bibliomet-
ric measures and content-based measures.

Metadata-based bibliometric measures study innovation in academic literature mainly 
through impact assessment. These measures can take different forms, such as correlating 
innovation with authors and sponsors, or taking citations and keywords as an indicator to 
evaluate the quality of scientific literature. Examples of the former are methods to appraise 
scientific literature according to the levels of authors (Tahamtan et  al., 2016) and spon-
sors (Wang et al., 2018), while the latter include the journal impact factor (Garfield, 2006), 
h-index (Hirsch, 2005), and so on. Metadata-based bibliometric measures are efficient and 
have the potential to detect scientific literature with high innovation automatically, but the 
impact assessment of any scientific literature only reflects what happens after publication.

Compared to metadata-based bibliometric measures, content-based measures can reduce 
the time lag by directly measuring the innovation expressed by the text data of scientific lit-
erature. These measures use text mining techniques that scan a large volume of textual data 
to identify the degree of innovation in academic papers. For example, some researchers 
tracked the frequency of topics over time and used the frequency score to indicate innova-
tion of topics (Mörchen et al., 2008). Some studies employed a topic’s temporal relation-
ship with other topics to decide the innovation of topics (He et al., 2009; Yan, 2014). These 
techniques can automatically detect research topics based on textual information and iden-
tify their innovation.

However, to the best of our knowledge, there are as yet no effective methods since most 
of them introduce different biases during the evaluation. First, recent work has shown that 
metadata-based bibliometric measures like citation counts are biased against newer articles 
Wang et al. (2017). Second, content-based measures mainly focus on the overall innova-
tion degree of scientific literature at the macro level (Reich, 1995; He & Chen, 2018). They 
pay little attention to the innovation degree of specific knowledge claims in scientific lit-
erature at the micro level of knowledge elements (KEs). Ding et  al. (2013) argued that 
looking deeper into the text, extracting KEs from academic papers, and using them as the 
main operands for the measurements have become the new frontier for measuring schol-
arly impact. According to the definition of Wang et al. (2019), a KE, such as a definition, 
theorem, rule, or method, is the smallest integral knowledge object in scientific literature. 
MKEs are usually considered as one of the most essential knowledge elements among all 
KEs (Hua, 2016; Chen & Kanuboddu, 2021). Its degree of innovation largely determines 
the quality of scientific papers (Wang et al., 2017; He & Du, 2020).Therefore, our research 
aims to develop a novel approach to detect and calculate the innovation degree of MKEs 
in scientific literature. To achieve this research goal, the following core issues need to be 
solved:
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–	 How to extract MKEs from academic papers? The existing evaluation measures 
pay little attention to the innovation degree of specific knowledge content in scien-
tific literature at the micro level of KEs. Therefore, it is impossible to know exactly 
where academic papers have made innovations. For this problem, we provide an 
effective approach that can extract MKEs from scientific literature automatically. 
Specifically, rule-based methods is used to extract MKEs from scientific literature.

–	 How to represent MKEs? The key challenge to derive innovation measure from 
the textual information of scientific literature is how to represent the semantics of 
MKEs effectively and efficiently without information loss. However, most of the 
existing quantitative evaluation measures treat the evaluation of scientific litera-
ture as a definite mathematical model, ignoring the fuzziness and randomness in 
the process of scientific literature assessment. Some evaluation models based on 
fuzzy set theory have indeed been proposed to solve the problem, but they lack 
comprehensive considerations of the randomness and fuzziness inherent in assess-
ing the quality of scientific literature Behret and Gumussoy (2012). To this end, we 
establish a novel multi-dimensional cloud model to comprehensively characterize 
the randomness and fuzziness of MKEs. Based on this cloud model, we quantified 
the semantic changes of MKEs and used it as a proxy to measure the innovation in 
scientific literature.

–	 How to calculate the innovation degree of MKEs? Previously, scholars have used 
various methods for measuring innovation in scientific literature. However, until 
now, there is no academic consensus on the definition of innovation. Some scholars 
have discussed innovation as being related to impact Costanzo and Sánchez (2019) 
while others relate it to novelty (Packalen & Bhattacharya, 2019; Trapido, 2015). 
Since impact assessment is just a partial proxy for scientific literature’s innovation 
and is mainly used at the macro level, this paper takes novelty as a measure of inno-
vation in scientific literature. Specifically, we rely on the similarity between MKEs 
to measure the innovation of MKEs. Under the same research field, the higher the 
similarity between a MKE and other MKEs, the lower the innovation degree.

The remainder of the paper is organized as follows: “Related works” Section reviews 
the related work on measuring the innovation in scientific literature. “A framework for 
measuring the innovation of MKEs” Section describes the framework to measure the 
innovation degree of MKEs in scientific literature, including the extraction of MKEs, 
the generation of MKC drops, the generation of the MKC, and the calculation of the 
innovation degree of MKEs based on a similarity cloud. The experiments and results 
are presented in “ Experiments and results” Section. Finally, we conclude the paper 
and discuss the future work in “Conclusion and future work” Section.

Related works

The evaluation of scientific literature and the measurement of the innovation degree of 
the scientific literature have been discussed in existing studies. The approaches can be 
summarized into two categories: metadata-based bibliometric measures and content-
based measures.
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Metadata‑based bibliometric measures

The most popular measure is the bibliographic analysis based on the metadata record of 
scientific literature, including information about journals, citations, keywords, authors, 
and their affiliations.

The journal impact factor (JIF) (Garfield, 1999) is the earliest measurement Garfield 
(2006) and is now viewed as a well-established indicator of the scientific quality of sci-
entific literature. The JIF method assumes that the articles published in high impact fac-
tor journals should be high quality Sombatsompop et al. (2006). One of the drawbacks 
of the JIF method is that a journal’s high impact factor may not result from the cita-
tions of all articles; instead, it may merely be attributed to a small number of highly 
cited articles (Campbell, 2008; Colquhoun, 2003; Garfield, 2001). Therefore, we cannot 
equate the quality of scientific literature with the journal’s impact factor in which it was 
published (Notkins, 2008; Uzzi et al., 2013).

To solve the problem of the JIF method, Frank proposed using citation counts to meas-
ure the quality of scientific literature (Frank, 2003). Citation counts can quantify both the 
use and impact of the cited scientific literature. In the present literature, a number of meas-
ures have emerged in relation to citation counts to quantify the research impact of scientific 
literature. Such approaches for measuring innovation could be supported by the suggestion 
that many new ideas in science are inspired by previous studies Zeng et al. (2017). How-
ever, these approaches can also be criticized since citation counts are accumulated over 
time. For example, an academic paper that received 50 citations in ten years is not neces-
sarily better than one that received 40 citations in five years. Therefore, any citation-based 
metrics without removing the time factors are unreliable for measuring the quality of sci-
entific literature (Kosmulski, 2011). In addition, the above metrics are not comprehensive 
enough as they only consider the numbers of citations. Instead, it is more reasonable to use 
weighted citations to assess scientific literature (Cai et al., 2019; Wang et al., 2020a).

However, citation metrics do not always appropriate for the assessment of scientific lit-
erature since: (1) Citation metrics only measure one aspect of an academic paper (impact 
or utility) and they alone cannot capture the distinct types of research contribution (Wu 
et al., 2019). (2) The citation count of an article cannot be directly applied for innovation 
measurement (Zhai et al., 2018) because citation count is influenced by various factors not 
directly related to the innovation in scientific literature (Onodera & Yoshikane, 2015).

An improved measurement “h-index” has been proposed (Hirsch, 2005). The h-index is 
an index that attempts to measure productivity and impact of scientific literature of a sci-
entist or scholar. Investigations show that the h-index works well in some contexts (Born-
mann et al., (2008); Lovegrove & Johnson, 2008), but can be invalidated by bias because 
of self-citations. Also, in the h-index-based measurement, a newly published article can-
not easily be evaluated on quality since it has only, so far, achieved a lower citation rate 
because of its more recent publication (Jin et al., 2007; Rousseau & Leuven, 2008).

In addition to journals, citations, and authors, keywords - representing the subject mat-
ter of articles—are also an important entity of metadata. Keywords-based approaches 
believe that high thematic novelty of academic papers is associated with high innovation. 
Uddin and Khan (2016) used the combination of usual and unusual keywords by authors to 
identify innovation in academic papers. A similar measure of “thematic novelty” based on 
the rareness of keyword combinations has also been proposed.

The above metadata-based bibliometric measures mainly evaluate the quality (the 
same method used to evaluate impact) of scientific literature based on external data 
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(such as journals, citation counts, and keywords), rather than focus on the content of 
the paper. Another drawback of the metadata-based bibliometric measures is their less 
semantically interpret-ability. Instead, using content-based measures will be more reli-
able and solid.

Content‑based measures

With the development of content analysis in academic literature, KEs, such as research 
methods, experiments, and result analyses, are considered as more appropriate resources 
for measuring innovation in academic literature. Therefore, content-based measures have 
attracted increasing attention recently.

Peer review is one of the most frequently used methods for innovation measurement 
based on a paper’s content. In this method, one or multiple domain experts are invited to 
evaluate the quality of a paper based on its content with several given criteria (Darling, 
2015). Authors are required to revise and improve the content based on reviewer feedback; 
the peer review process is a good assurance of the quality of academic literature.

However, there are two unavoidable issues in the peer-reviewed process: (1) with the 
explosion of submissions, finding an equivalent number of appropriate reviewers is becom-
ing more difficult. In addition, reviewers may be assigned too many papers to review; too 
large a workload may also reduce the review quality. (2) Peer review can be quite subjec-
tive since opinions of different reviewers (sometimes reviewers may have markedly differ-
ent backgrounds) on the same article can vary greatly; this may introduce the bias issue 
(Reinhart, 2009; Walker & Rocha da Silva, 2015).

Therefore, an automatic approach to identifying the contributions and innovations in 
scientific literature is beneficial and urgent. Efforts have been made by the research com-
munity to automatically extract semantic information (Marcondes & da Costa, 2016; 
Ronzano & Saggion, 2016; Tkaczyk et al., 2015), such as knowledge claims (Dahl, 2008; 
Myers, 1992), from the scientific literature. A knowledge claim is defined as a sentence 
summarizing the knowledge contribution that peers recognize in the field (Hunston, 1993). 
Although what constitutes knowledge claims is not entirely clear, which brings great chal-
lenges to identifying knowledge claims from scientific literature, these research studies also 
provide great inspiration for fine-grained evaluation of scientific literature. Based on these 
studies, our research is a step forward by proposing an approach to measure the innovation 
of MKEs in scientific literature at the micro level.

A framework for measuring the innovation of MKEs

Although we do not know exactly how many kinds of knowledge claims there are in scien-
tific literature, the MKE is believed to be an essential knowledge claim of scientific litera-
ture. MKE is defined as following:
Definition 1   (Method knowledge element): MKE refers to actions to be taken to investi-
gate a research problem and the rationale for the application of specific procedures or tech-
niques used to identify, select, process, and analyze information applied to understanding 
the problem (Bryman, 2008; Chu & Ke, 2017; Wang et al., 2019). MEK can be represented 
as < C, (S1, S2, Si,… , Sn) > , where C is the designation, representing an MKE, and Si is the 
i th statement, describing the method definition, purposes, preconditions, functions, sub-
steps, effects and others (Wang et al., 2019). For example, “A feature selection algorithm 
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based on random forest (RFFS) is proposed. This algorithm adopts random forest algo-
rithm as the basic tool, the classification accuracy as the criterion function.” is a MKE 
extracted from Yao et al. (2014).

Due to the uncertainties (i.e., randomness and fuzziness) of these statements, MKEs 
are difficult to identify. There are two main challenges: (1) formally describing the qualita-
tive concepts using natural language; and (2) transforming qualitative concepts to quantita-
tive values. Several knowledge representation models have been proposed to tackle the two 
issues, yet they fail to consider the same model’s randomness and fuzziness of knowledge. 
Recently, word embeddings such as Word2Vec Mikolov et  al. (2013), Glove Penning-
ton et al. (2014), TextCNN Chen (2015), and Bert Devlin et al. (2018), have been widely 
applied for learning the word representation of the concepts since they can capture the 
semantic and context information of the text. Word2Vec Mikolov et al. (2013), Glove Pen-
nington et al. (2014), TextCNN Chen (2015) belong to the static word embedding, while 
Bert belongs to the contextual word embedding. Compared to static word embeddings, 
which only produce a fixed context-independent representation for each word, contextual 
word embedding such as BERT embedding produces the word-level representation based 
on the information of the entire sentence. Therefore, the same word could have a different 
representation if the word appears in different sentences. The Bert model has produced the 
best performance in many NLP tasks (Li et al., 2020). However, the word embedding-based 
models fail to generate high-quality vector representations for less frequent or new terms 
(Gupta et al., 2019), making them hardly reusable in computing the innovation degree of 
MKEs since We usually use new terms to describe new MKEs. The uncertainties, such 
as randomness and fuzziness of linguistic concepts also make the word embedding-based 
models challenge for MKEs identification. To bridge this gap, it is more feasible for a rep-
resentation model which takes both the randomness and the fuzziness into consideration. 
However, most existing representative theories, for example probability theory, fuzzy sets 
theory, only deal with the fuzziness and randomness of linguistic concepts, respectively. 
Therefore, in this article, we combine the randomness and fuzziness for MKEs identifi-
cation. Meanwhile, the cloud model (Li et al., 2009), an uncertain transformation model 
proposed to transform qualitative concepts to quantitative values, is applied to represent the 
MKEs. The cloud model represents uncertainty and fuzziness using membership degree or 
certainty. Cloud and cloud drops are the basic units, which are defined as following:

Definition 2  (Cloud and cloud drops): Assume that U is a quantitative numerical uni-
verse of discourse and C is a qualitative concept in U. If x ∈ U is a random implementation 
of concept C, �(x) ∈ [0, 1] , standing for the certainty degree for which x belongs to C, is a 
random variable with stable tendency.

In the cloud model, the natural language concepts can be expressed by numerical 
features (Wang et al., 2011). Among these features, Ex is the expected value. En is the 
entropy, which is a general method to measure uncertainty. Typically, the larger the 
entropy is, the more difficult it is to describe the concept qualitatively and quantita-
tively. He is a measure of entropy, also called the entropy of entropy. Hyper-entropy 
reflects the cohesiveness of the uncertainty of all points representing qualitative con-
cepts in the universe. Generally, the greater the super entropy, the greater the disper-
sion of cloud drops, the greater the randomness of membership and certainty, and the 
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“thicker” the cloud thickness. Figure 1 shows the graph of a normal form cloud whose 
numerical characteristics are Ex = 0 , En = 3 , and He = 0.3.

The paper proposes a framework to measure the innovation degree of method knowl-
edge elements (MIDMKE) based on the similarity cloud model. MIDMKE can be 
divided into four parts (which is shown in Fig. 2): 

1.	 Extracting MKEs from the scientific literature.
2.	 Generating the cloud drops of each MKE based on BTM.
3.	 Generating the MKC of each MKE based on cloud drops.
4.	 Calculating the innovation degree of MKEs based on similarity cloud.

Fig. 1   An example of the normal form cloud

Fig. 2   The framework to measure the innovation degree of MKEs in a academic paper
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Extracting the MKEs from scientific literature

MKEs consist of natural language sentences that are used to describe method knowl-
edge. Therefore, the extraction of MKEs can be achieved by extracting method sentences 
from scientific literature. Rule-based methods are the most frequently used for sentence 
extraction. In our research, we reuse these methods to extract MKEs from scientific lit-
erature. Algorithm  1 presents the pseudo-code of the whole process and Fig.  3 depicts 

Fig. 3   The pipeline of method sentence extraction
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the workflow of extracting MKEs. As for the rules for MKE extraction, We use two types 
of rules: method clue vocabulary and noise words of Method clue vocabulary, which are 
listed in Table 1.

Generating the MKC drops

The method knowledge cloud is composed of each method knowledge cloud drop (MKCD) 
and all the MKCDs together indicate the characteristics of the MKEs. Thereby, in order to 
represent the MKEs using the cloud model, the first step is to generate the MKCDs (topic 
words that are used to describe the MKEs). For a MKCD x, its certainty degree �(x) can 
be defined as the extent to which the drop can represent the MKE accurately. The more rel-
evant a MKCD is to a topic, the greater the certainty degree of the MKCD.

Conventional topic models, such as PLSA and LDA, are among the most popular tech-
niques for discovering topic words within a document (Zan et al., 2007; Lu et al., 2011). 
Since MKEs belong to short texts, applying these conventional topic models directly to 
such short texts usually does not achieve the expected performance. The reason is that 
conventional topic models implicitly capture the document level word co-occurrence pat-
terns to reveal topic words and thus suffer from severe data sparsity in short documents. To 
tackle the sparsity problem of the conventional topic models, we use the BTM to identify 
topic words of a MKE in this paper. BTM is a word co-occurrence-based topic model that 
learns topics by modeling word-word co-occurrences patterns (Yan et al., 2013).
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The initial idea of the BTM is to use the word pairs generated in the whole corpus to 
learn the topic of short texts and reduce the dimension of the document representation 
matrix by giving the number of specified topics and the number of words under each 
topic so that the words in the matrix can better represent the document (Tang, 2014). In 
this paper, the generation process of MKCDs based on the BTM is shown in Fig. 4.

There are three main steps: 

1.	 Text preprocessing: Each MKE is tokenized during this step, and then stop words are 
removed.

2.	 BTM modeling: This step mainly includes word pair generation and parameter reason-
ing. The process of word pair generation is shown in Fig. 5, and the process of parameter 
reasoning is shown in algorithm 2. Two multinomial parameters, � and � , are obtained 
according to the counter and co-occurrence of word to topic assignment, where � refers 
to the distribution of topic in the dataset of MKEs and � refers to the global topic dis-
tribution in the dataset of MKEs. The specific calculation formulas are as follows: 

(1)�w�z =
nw�z + �

∑
w
nw�z +M�

,

Fig. 4   The generation process of MKC based on BTM
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 Where �w|z refers to the probability of a word W in a topic z, �z refers to the prob-
ability of a topic z, |B| refers to the total number of word pairs, � and � are the dirichlet 
priors, nz is the number of times the biterm b is assigned to the topic z, and nw|z is 
the number of times the word w is assigned to the topic z. After the BTM modeling 
process, two output documents, the topic-word distribution matrix document and the 
document-topic distribution matrix document, are generated.

3.	 MKCD generation: the topic representation of each document (a MKE) is obtained 
using the document-topic distribution matrix, and then the first n words of each topic are 
extracted based on the topic-word distribution matrix as the MKCDs. Finally, the cloud 
drops of each MKE are obtained. Note that the cloud drops of ith MKE is represented 
by (wi1,wi2,… ,wij,… ,win).

Generating the MKC

Normal distribution is essential in probability theory, which is generally expressed by 
mean and variance. In fuzzy set theory, the bell membership function is widely used. The 
bell membership function is defined as:

A normal cloud is the most important model in cloud models (Hy et al., 2016). The nor-
mal cloud model is a representative model of conceptual uncertainty based on the normal 

(2)�z =
nz + �

|B| + K�
,

(3)�(x) = e
−

(x−a)2

2b2 ,

Fig. 5   The generation model of BTM word pairs
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distribution and bell membership function. The MKC is generated by two steps, which are 
described as follows: 

1.	 Generating the digital characteristics of a normal cloud. Through the backward normal 
cloud generator (BNCG), given a limited set of MKCDs, the three digital characteristics 
Ex, En, and He could be produced to represent the corresponding MKE. The three cloud 
model digital characteristics of the ith MKE are calculated according to the following 
formulas. 

 Among them, n represents the number of cloud drops corresponding to each MKE; 
the sample variance Si represents the degree of association between the core words 
and related words. The generation process of MKC based on the BNCG is shown in 
algorithm 3. 

2.	 Generating the expectation curve of a normal cloud. Due to the obvious geometric 
characteristics of a normal cloud, we use the expectation curve to study the overall 
characteristics of MKC. The definition of a normal cloud expectation curve of MKC is 
as follows:

Definition 3   (The normal cloud expectation curve of MKC): Given the quantitative uni-
verse U, C is a MKE based on U. If the quantitative value in U is a random realization of 
C and satisfies the condition x ∼ (Ex,En2) , where En ∼ N(En,He2) and En ≠ 0 , then the 
normal cloud expected curve of a MKE is as follows: 

(4)Exi =
1

n

n∑

j=1

�(wij),

(5)Eni =

√
�

2
×
1

n

n∑

j=1

|Wij − Exi|,

(6)S2
i
=

1

n − 1

n∑

j=1

(Wij − Exi)
2
,

(7)Hei =

√
S2
i
− En2

i
,



2816	 Scientometrics (2022) 127:2803–2827

1 3

In this paper, we use formula 8 to get the normal cloud expectation curve of each 
MKE.

Calculating the innovation degree of MKEs based on the similarity cloud

A new KE indicates the innovation of an article. Intuitively, a new KE can be identi-
fied by comparing it with KEs in the existing scientific literature: if it already exists in 
previous scientific literature, we cannot consider it a new KE; otherwise, it has a high 
possibility of being a new KE. Therefore, in this paper, we use the similarity between a 
MKE and other MKEs to measure the innovation degree of the MKE. Precisely, we first 
calculate the similarity between MKEs based on similarity cloud (Li et al., 2009; Wang 
et  al., 2020b), then measure the innovation degree of a MKE through calculating the 
average similarity between it and other MKEs.

Calculating the similarity between MKEs

The similarity cloud algorithm (Li et al., 2009; Wang et al., 2020b) based on the expec-
tation curve overlap of normal clouds is used to measure the similarity degree of MKCs. 
The overlap degree is proposed to describe the overlapping part of two clouds. The basic 
idea of the similarity cloud algorithm is to calculate the area that is the overlap between 
the expectation curve of MKCs C1(Ex1,En1,He1) and C2(Ex2,En2,He2) and judge the 
similarity degree between MKCs according to the size of the area. The specific calcula-
tion process is as follows: 

1.	 Define the boundary of each MKC. There is a 3En rule that is 99.74% of cloud drops 
will fall on the interval [Ex − 3En,Ex + 3En] in a normal cloud model. The cloud drops 
located outside of [Ex − 3En,Ex + 3En] are called the small probability event. These 
cloud drops do not affect the overall characteristics of the cloud model if we do not con-
sider them. Instead, we only need to consider the cloud drops distributed in this region 
when computing the similarity between MKCs. The boundary of MKC Ci is as follows: 

2.	 Define the overlap between method MKCs. There are two kinds of overlap between 
MKCs: one is that there is no overlap, the other is that there is overlap. There is no 
overlap between MKC C1 and C2 when the lower boundary of C1 is greater than the upper 
boundary of C2 , or the upper boundary of C1 is less than the lower boundary of C2 . In 
other words, the cloud similarity between C1 and C2 is 0. When there is overlap between 
C1 and C2 , the formula of the overlap is as follows: 

3.	 Calculate the intersection point between MKCs. Supposing there is an overlap between 
C1 and C2 , the method of finding the intersection is as follows: 

(8)y = e
−

(x−Ex)2

2En2 ,

(9)boundary(Ci) = [Exi − 3Eni,Exi + 3Eni],

(10)overlap(C1,C2) = [min(Ex1 − 3En1,Ex2 − 3En2),max(Ex1 + 3En1,Ex2 + 3En2)],



2817Scientometrics (2022) 127:2803–2827	

1 3

4.	 Calculate the similarity between MKCs. According to the relationship between the 
overlap and the intersection of MKCs C1 and C2 , there are three kinds of similarity 
calculation methods:

–	 The intersection points (x1, y1), (x2, y2) are both outside the overlap of the MKCs C1 
and C2 . In other words, there is no overlap, so the cloud similarity between C1 and 
C2 is as follows: 

–	 One of the intersections (x1, y1) and (x2, y2) is within the overlap of the MKCs C1 and 
C2 . In other words, there is a cross relationship between MKCs C1 and C2 . The cloud 
similarity between C1 and C2 is then as follows: 

 Where � denotes the certainty degree of the intersection of MKCs C1 and C2 , and � 
is the certainty degree of cloud model 3En rules.

–	 The intersection points (x1, y1) and (x2, y2) are both within the overlap of the MKCs 
C1 and C2 . In other words, there is an inclusion relation between MKCs C1 and C2 
(see Fig. 6). The cloud similarity between C1 and C2 is as follows: 

(11)x1 =
Ex2En1 − Ex1En2

En1 − En2
, y1 = e

−
(x1−Ex)

2

2En2 ,

(12)x2 =
Ex1En2 − Ex2En1

En1 + En2
, y2 = e

−
(x2−Ex)

2

2En2 ,

(13)Sim(C1,C2) = 0,

(14)Sim(C1,C2) =
� − �

1 − �
× overlap(C1,C2),

(15)Sim(C1,C2) =
�(max) − �

1 − �
× overlap(C1,C2),

Fig. 6   Calculating the similarity between MKCs
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 where �(max) denotes the certainty degree of the upper intersection point of (x1, y1) 
and (x2, y2).

Measure the innovation degree of MKE

In this paper, we rely on the similarity between MKEs to measure the innovation degree 
of the MKE. Under the same research field, the higher the similarity between the MKE 
Ci and other MKEs, the lower the innovation degree. Therefore, for a KE Ci , the formula 
to measure its innovation degree is as follows:

Experiments and results

Data

To validate the MIDMKE proposed in this paper, we conducted experiments on sci-
entific literature of the “feature selection method (FSM)” research field in China. We 
selected the “FSM” as the test domain mainly for two reasons. First, the “FSM” is a 
research field mainly focusing on methods to reduce the number of input variables when 
developing a predictive model, academic papers of this research field are rich in MKEs. 
Second, the “FSM” is a subfield of machine learning. The total number of related papers 
is not very huge, so it is easier for domain experts to evaluate, interpret, and validate the 
results of our experiments.

To ensure that all possible relevant papers are collected, the top information provider 
in China, CNKI Data, is used. CNKI, whose purpose is a knowledge sharing throughout 
China and the world, is a key national project of China. Its China Academic Journals 
Full-text Database is the largest searchable full-text interdisciplinary Chinese journals 
database in the world. Finally, a total of 1191 academic papers of the “FSM” research 
field published in core journals in China were retrieved from CNKI Data. In our experi-
ments, we split the 1191 academic papers into two sets: a reference set and a test set 
to evaluate how the MIDMKE proposed in this paper is working. The reference set 
includes 1072 academic papers used as the reference of academic papers, and the test 
set includes 119 academic papers recently published in different journals.

Baselines

–	 We first compare our rule-based MKE extraction strategy with TextCNN, a convolu-
tional neural network (CNN) for text. In TextCNN, document matrices generated by 
word embeddings (ERNIE_Chinese, 12-layer, 768-hidden, 12-heads, 110M parame-
ters) are input into a CNN to perform identification. In the convolutional layer, every 
filter performs convolution on each word and different feature maps are firstly gener-
ated. A max-overtime pooling operation is then used to select the most critical fea-
tures, and the activation function is used in this step. Finally, the extracted features 

(16)Cr(Ci) =

∑m

j=1
(1 − Sim(Ci,Cj))

m
.
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are concatenated as the penultimate layer and passed to a fully connected SoftMax 
layer to predict the probability distribution over class labels To avoid over-fitting, we 
use dropout and batch normalization on the penultimate layer and weight vectors to 
reduce the parameters, as recommended by Gong and Ji (2018).

–	 We also compare our rule-based MKE extraction strategy with Bert, the state-of-the-art 
(SOTA) for multiple NLP tasks (Devlin et al., 2018). Given a text together with its label 
as an input sequence, it will be converted using the pre-trained BERT model (Bert_
base_chinese, 12-layer, 768-hidden, 12-heads, 110M parameters). We then fine-tune the 
model and add the simple softmax classifier to the top of BERT for MKE identification. 
The output is the probabilities of a phrase belong to the MKE.

Evaluation metrics

We use precision, recall, and F1-score as metrics to evaluate the performance on MKE 
extraction since they are the most used evaluation metrics for text classification (Li et al., 
2020).

Experiment setup

MKE identification

We train the models on Windows11 21H2 machine with 1 NVIDIA GeForce RTX3070 Ti 
GPU(8G), 12th Gen Intel(R) Core(TM)(i7-12700k@3.61GHz) and 16GB of RAM. We set 
the batch size to 8, with a max sequence length of 128 and a learning rate of 2e-5 to ensure 
that the GPU memory is fully utilized. The dropout probability is always kept at 0.1. We 
use Adam with �1 = 0.9 and �2 = 0.999 . We empirically set the max number of the epoch 
to 15 and save the best model on the validation set for testing. We conduct five-fold cross-
validation to avoid over-fitting. The epoch of TextCNN is set as 20.

Measuring the innovation degree of MKEs

We measured the innovation degree of MKEs in the academic papers of the test set. The 
process is as follows. First, MKEs were extracted from 1191 academic papers based on the 
propose rule-based algorithm. Second, MKCDs of each MKE were generated using the 
BTM (see Table 2), and then based on MKCDs, the MKC (Ex, En, and He) for each MKE 
is generated through the BNCG (see Table 2). Third, based on the digital characteristics 
Ex and En of each MKC, the corresponding normal expectation curve of the MKC is gen-
erated through formula 8 (see Fig. 7). Last, the similarity between MKCs is obtained by 
using the cloud similarity calculation formulas 13, 14, and 15. Then the innovation degree 
of each MKE is calculated by using the innovation degree calculation formula 16.

Results and analysis

Results on MKE identification

Table 3 presents the results of MKE identification of TextCNN, Bert, and the Rule-based 
method regarding precision, recall, and F-1 score. The rule-based method achieves the 
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Table 2   MKCs and their respective drops

MKE ID MKCDs Digital features of MKC

M1 Pattern recognition (0.0154), learning (0.1581), (0.0043,0.0102,0.0204)
Zhang et al. (2005) Classification (0.0590), clustering (0.1125), mean 

(0.0354),
Supervision (0.1786), impact (0.0347), correlation 

(0.0198)
M2 Function (0.0304), space (0.0952), important 

(0.0562),
(0.0133,0.0286,0.0611)

Shang and Huang (2006) Network (0.0121), performance (0.0945), automatic 
(0.0201),

Classification (0.5316), construction (0.0182)
M3 Tradition (0.2077), category (0.2566), combination 

(0.1186),
(0.0153,0.0340,0.0496)

Yang et al. (2010) Performance (0.0945), classification (0.5316),
Classifier (0.0932), Vector (0.0822), document 

(0.2319)
M4 Distribution (0.1685), tradition (0.2077), category 

(0.2566),
(0.0138,0.0303,0.0490)

Pei and Liu (2011) Classification (0.5316), precision (0.0528),
Corpus (0.0407), impact (0.0744), feature word 

(0.1751)
M5 Information (0.2741), distribution (0.1685), (0.0154,0.0351,0.0634)
Ren et al. (2010) Probability (0.0122), tradition (0.2077), performance 

(0.0945),
Classification (0.5316), text (0.5442), gain (0.1772)

M6 Criterion (0.0425), function (0.0271), subset (0.3759), (0.0128,0.0293,0.0634)
Yao et al. (2014) Random (0.1208), performance (0.1980),

Classification (0.6883), accuracy (0.1606), sequence 
(0.0199)

M7 Information (0.1430), subset (0.3123), important 
(0.1117),

(0.0103,0.0229,0.0341)

Zhang et al. (2013) Correlation (0.1344), performance (0.0911),
Classification (0.2090), classifier (0.0252), independ-

ent (0.0087)
M8 Criterion (0.0623), matrix (0.0451), correlation 

(0.1344),
(0.0064,0.0143,0.0240)

Fan et al. (2013) Tradition (0.0324), evaluation (0.1239), neural net-
work (0.0026),

Classification (0.2090), variable (0.0142)
M9 Search (0.0382), criterion (0.0230), inter-class 

(0.0241),
(0.0206,0.0406,0.0587)

Xie and Xie (2014) Subset (0.1672), learning (0.0888), combination 
(0.0394),

Performance (0.1089), concentration (0.0208)
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best performance regarding all the three evaluation metrics, confirming the conclusion that 
deep learning models such as TextCNN and Bert need more data for training. When the 
dataset is small, traditional models such as the the proposed rule-based method can achieve 
a better performance.

Results on the innovation measurement of MKEs

The first issue for determining the performance of the MIDMKE is how the reference evalu-
ation results (RER) are generated. Peer review, as a typical qualitative content-based analysis 

Fig. 7   a M1 b M2 c M3 d M4 e M5 f M6 g M7 h M8 i M9 Normal expectation curve of the MKC

Table 3   The performance of 
MKE identification

Model Precision Recall F-1 score

TextCNN 0.9200 0.5610 0.6970
Bert 0.8000 0.9157 0.8539
Rule-based method 0.9527 0.9300 0.9412
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method for evaluating the innovation degree of academic papers, has been widely used to 
determine the innovation degree of academic papers. Due to this, we use peer review to obtain 
the RER, which serves as a gold standard in our experiments. Specifically, five experts famil-
iar with the “FSM” research field are selected to score the innovation degree of MKEs in the 
academic papers of the test set on a scale of zero to ten. Then the judgments of these five 
experts are averaged to construct the RER (see Table 4). The higher the average score, the 
higher the innovation degree of the MKE.

The second issue for determining the performance of MIDMKE is related to choosing 
which index to use as the baseline index. Through analysis, we find that in the existing innova-
tion degree measurement indices, both journal impact factor and h-index are indirect ways to 
measure the innovation degree of academic papers. On the one hand, the JIF wrongly equates 
the importance of a paper with the impact factor of the journal in which it was published; on 
the other hand, the h-index is mainly used to measure the impact of a particular scientist than 
an academic paper. Therefore, based on the above analysis, in order to evaluate the added 
value of integrating a cloud model into the innovation degree evaluation framework of an aca-
demic paper at the micro-level of KE, the citation is selected as the baseline index, which 
mainly focuses on the overall innovation degree of an academic paper at the macro level of lit-
erature and treats the evaluation of academic papers as a definite mathematical model, ignor-
ing the fuzziness and randomness in the process of academic paper assessment. The experi-
mental results are shown in Table 4.

Table 4 summarizes the rankings of the RER, citation, and MIDMKE indices. There are no 
obvious correlation distribution characteristics between these indices, so Pearson single-tailed 
correlation tests are conducted. The test results are shown in Table 5. The results show that 
RER and MIDMKE have a significant positive correlation ( 1 > 0.922 > 0.5 ) with a p-value of 
less than 0.01. It indicates that academic papers with low RER scores also have low MIDMKE 
scores, while those with high RER scores usually also have high MIDMKE scores. In theory, 
like MIDMKE, the citation indices should also have the same order as RER. However, in 
practice, there were no remarkable correlations between citation and RER. Because, although 
the citation index and the RER index have a medium correlation ( 0.49 > 0.423 > 0.30 ), its 
p-value is bigger than 0.05 ( 0.071 > 0.05 ). Many other studies have also demonstrated that 
the correlation between citation rate and score of peer evaluation is moderate Abramo et al. 
(2011); Mryglod et al. (2013). Through comparison, we can see that the MIDMKE proposed 
in this paper achieved better results than the citation index.

Conclusion and future work

Nowadays, with the rapid growth of published literature, it is necessary to automatically 
measure the innovation degree of scientific literature. Although the methods of the innovation 
degree measurement of the scientific literature have been improved from many aspects, they 
still face some limitations that need to be solved. In order to overcome these limitations, this 
paper proposes an innovation degree measurement framework of MKE in academic papers.

Table 5   Correlation analysis 
results

Variables Significance (one-tailed) Pearson

MIDMK - RER 0.010 0.922
Citation - RER 0.071 0.423
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The main contributions of this study are twofold. First, we analyze the limitations of 
metadata-based bibliometric measures and content-based analysis measures, which are 
used to evaluate the innovation degree of scientific literature. The key to solving these 
problems is to evaluate the innovation degree of scientific literature at the micro-level of 
KE. Second, this paper proposes an innovation degree measurement framework of MKE 
in scientific literature to overcome these limitations. In this framework, we first provide an 
effective approach that can extract MKEs from scientific literature automatically, and then 
we establish a novel multi-dimensional similarity cloud model to characterize the random-
ness and fuzziness of MKEs comprehensively. Then we apply this model to determine the 
innovation degree of MKEs in academic papers. The effectiveness and performance of this 
framework have been validated through a case study.

However, the main defect of our study is the difficulty in fully extracting MKEs. The 
main reason for this difficulty is that it is impossible to obtain all the rules used in the 
rule-based MKEs extraction. In the future, we will conduct further studies on better MKEs 
extraction methods to improve the MIDMKE proposed in this paper. We will also integrate 
other knowledge elements using the cloud model for the innovation measurement.
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