
Investigating Code Generation Performance of
ChatGPT with Crowdsourcing Social Data

Yunhe Feng†, Sreecharan Vanam†, Manasa Cherukupally†, Weijian Zheng‡, Meikang Qiu§ and Haihua Chen†
†University of North Texas, ‡Argonne National Laboratory, §Dakota State University

†yunhe.feng@unt.edu, †vanamsreecharan@my.unt.edu, †manasacherukupally@my.unt.edu
‡wzheng@anl.gov, §meikang.qiu@dsu.edu, †haihua.chen@unt.edu

Abstract—The recent advancements in Artificial Intelligence,
particularly in large language models and generative models,
are reshaping the field of software engineering by enabling
innovative ways of performing various tasks, such as program-
ming, debugging, and testing. However, few existing works have
thoroughly explored the potential of AI in code generation and
users’ attitudes toward AI-assisted coding tools. This knowl-
edge gap leaves it unclear how AI is transforming software
engineering and programming education. This paper presents
a scalable crowdsourcing data-driven framework to investigate
the code generation performance of generative large language
models from diverse perspectives across multiple social media
platforms. Specifically, we utilize ChatGPT, a popular generative
large language model, as a representative example to reveal its
insights and patterns in code generation. First, we propose a
hybrid keyword word expansion method that integrates words
suggested by topic modeling and expert knowledge to filter
relevant social posts of interest on Twitter and Reddit. Then
we collect 316K tweets and 3.2K Reddit posts about ChatGPT’s
code generation, spanning from Dec. 1, 2022 to January 31,
2023. Our data analytics show that ChatGPT has been used
in more than 10 programming languages, with Python and
JavaScript being the two most popular, for a diverse range
of tasks such as code debugging, interview preparation, and
academic assignment solving. Surprisingly, our analysis shows
that fear is the dominant emotion associated with ChatGPT’s
code generation, overshadowing emotions of happiness, anger,
surprise, and sadness. Furthermore, we construct a ChatGPT
prompt and corresponding code dataset by analyzing the screen-
shots of ChatGPT code generation shared on social media. This
dataset enables us to evaluate the quality of the generated code,
and we have released this dataset to the public. We believe the
insights gained from our work will provide valuable guidance for
future research on AI-powered code generation.

Index Terms—ChatGPT, Coding Generation, Software Engi-
neering, Large Language Models (LLMs), Generative Models,
Social Media

I. INTRODUCTION

Recently, the advancements in large language models

(LLMs) and generative models have revolutionized many ap-

plications, including free text generation, question answering,

and document summarization, enabling a wide range of real-

world services such as AI robot lawyers [1] and AI music

co-creation [2]. The field of coding, which involves writing

tasks in certain programming languages, is also benefiting

from the rapid development of generative LLMs. However,

unlike traditional writing tasks, programming requires strict

adherence to syntax and logic rules, making it more challeng-

ing for generative models to produce high-quality code.

Fig. 1. ChatGPT writes the bubble sort algorithm in Python

Several studies have investigated the potential of LLMs

in software development. For instance, Barke et al. [3] and

Vaithilingam et al. [4] examined user perceptions of generative

models in coding writing. However, many of these studies

are based on case studies, with limited consideration of

broader applications in software development. The emerging

OpenAI’s ChatGPT, a member of the GPT LLM family,

demonstrates promising performance in code generation, at-

tracting widespread attention from stakeholders in software

engineering. As shown in Figure 1, ChatGPT can generate the

bubble sort algorithm in Python with the prompt of “write the

bubble sort in Python.” Some studies have explored the use

of ChatGPT for code generation tasks [5]–[7]. Nonetheless,

these studies did not comprehensively evaluate the overall

effectiveness of ChatGPT as a code generation and assistance

tool on a large scale.

It is challenging to conduct a large-scale study on the

performance of LLMs in code generation due to the following

reasons. First, programming languages exhibit diverse syntax

and are applicable to a wide range of tasks. For instance, SQL

is primarily utilized in database operations, while JavaScript

is commonly used in web programming. Second, code gen-

eration encompasses numerous programming tasks, including

debugging, testing, and programming, for various stakehold-

ers. Moreover, conducting user studies in the lab to investi-

gate the code generation of LLMs can be costly and time-

consuming. Therefore, conducting a comprehensive study on

the performance of LLMs that covers numerous programming

languages, tasks, and stakeholders poses significant challenges.

To address the aforementioned challenges, this paper pro-

876

2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)

979-8-3503-2697-0/23/$31.00 ©2023 IEEE
DOI 10.1109/COMPSAC57700.2023.00117

20
23

 IE
EE

 4
7t

h
A

nn
ua

l C
om

pu
te

rs
, S

of
tw

ar
e,

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

(C
O

M
PS

A
C

) |
 9

79
-8

-3
50

3-
26

97
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
O

M
PS

A
C

57
70

0.
20

23
.0

01
17

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2023 at 16:19:04 UTC from IEEE Xplore. Restrictions apply.

poses a scalable crowdsourcing data-driven framework that

integrates multiple social media data sources to examine

the code generation performance of ChatGPT. The proposed

framework comprises three key components, namely keyword

expansion, data collection, and data analytics. Specifically,

we utilize topic modeling and expert knowledge to identify

all keywords that are relevant to programming in the context

of ChatGPT, thus expanding the seed keyword of ChatGPT.

Using these expanded keywords, we retrieved 316K tweets

and 3.2K Reddit posts related to ChatGPT’s code generation

from December 1, 2022, to January 31, 2023.

Furthermore, we conduct a comprehensive analysis using

multimodal data (text and images) to answer the following

research questions:

1) What are the most popular programming languages in

ChatGPT usage?

2) What programming scenarios, tasks, and purposes are

people using ChatGPT for?

3) What is the temporal distribution of the discussion on

ChatGPT code generation?

4) How do stakeholders perceive ChatGPT code generation?

5) What are the prompts to generate code?

6) What is the quality of the code generated by ChatGPT?

7) Does the generated code present any ethical issues?

To the best of our knowledge, this work is the first large-

scale, systematic study on emerging generative models for

code writing and testing using crowdsourced social data. We

summarize our contributions as follows:

• We have proposed a scalable crowdsourcing and social

data-driven framework for investigating the code genera-

tion capabilities of ChatGPT.

• We have presented a novel hybrid keyword expansion

method that incorporates words recommended by topic

modeling and experts to ensure that most of the related

social media posts are matched during data collection.

• Our study considers multiple social media platforms

(Twitter and Reddit) and multimodal data (text and im-

age) to mitigate potential biases caused by a single data

source or data type.

• We have provided data analytics from multiple perspec-

tives, including topic inference, sentiment analysis, and

data quality measurement.

• We have built a real-world programming dataset con-

taining the ChatGPT prompt and the associated gener-

ated Python code. This dataset is publicly available at

https://shorturl.at/oEMN2.

II. RELATED WORK

Automatic Code Generation. Many machine learning and

deep learning models [8], [9] have been explored for automatic

programming. For example, Raychev et al. [10] proposed a

code completion technique using statistical language mod-

els to discover highly rated sentences and recommend code

completion suggestions. Sun et al. [11] introduced a novel

tree-based neural architecture that incorporates grammar rules

and abstract syntax tree structures into the network, and it

was reported to achieve the best accuracy among all neural

network-based code generation methods. Ciniselli et al. [12]

conducted a detailed empirical study on BERT models for code

completion and evaluated the percentage of perfect predictions

that match developer-written code snippets.

As ChatGPT has gained more attention recently, some

researchers have studied its use for code generation [5]–

[7]. For example, Aljanabi et al. [5] listed automatic code

generation as one of the open possibilities for ChatGPT. Avila

et al. [6] elaborated on the programming potential of ChatGPT

for implementing online behavioral tasks, including concurrent

reinforcement schedules, using HTML, CSS, and JavaScript

code. They created files with the extensions .html, .css, and

.js, encompassing fundamental page structures like headings,

style element integration, and dynamic components.

Automatic Bug Fixing. Unidentified and unsolved bugs in

complex coding are always threatening the correctness and

resilience of software systems. To automatically detect and

fix code bugs and errors, the concept of Automated Program

Repair (APR) has been proposed. Recent advancements in

deep learning have facilitated the integration of APR into

many large language models (LLMs). LLM-based tools such

as Codex [13], CodeBERT [14], and Conversational APR [15]

have been proposed for bug fixing.

A recent study [16] conducted a comparative evaluation

of ChatGPT’s efficiency in bug fixing with other baseline

tools, such as Codex [13]. About 40 of QuixBugs benchmark

problems containing erroneous code were given to ChatGPT

to provide solutions. The experiment results showed that

ChatGPT’s performance was similar to other APR tools like

Codex. However, when given more context information about

the problem through its dialogue box, ChatGPT’s performance

improved, delivering a success rate of 77.5%.

Interactions and Limitations. As programming generation

and assistant tools, such as CodeBERT [14] and IntelliCode

Compose [17], become more widely used, there has been an

increased focus on investigating the usability and interactions

between users and code generation tools [3], [4], [18], [19].

For example, Barke et al. [3] identified two interaction modes

between programmers and code generation tools: acceleration

mode and exploration mode, by observing how 20 program-

mers solved various tasks using the code generation tool

Copilot. Vaithilingam et al. [4] performed a study on 24 partic-

ipants consisting of different groups of people with minimal

and moderate experience in using Copilot and IntelliSense.

By quantitative and qualitative analysis, they observed that

participants who used Copilot failed to complete tasks more.

Although advanced automatic code generation tools work

fine with simple code logic, it can be challenging to handle

large software engineering projects [20]. For instance, the

development of a web browser involves a deep understanding

of human needs that are challenging to encapsulate within the

confines of simple, machine-readable specifications, which AI

typically employs to produce code [20]. In addition, ethical

concerns about code generation models have begun to surface.

877

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2023 at 16:19:04 UTC from IEEE Xplore. Restrictions apply.

For example, Chatterjee and Dethlefs [21] found evidence of

gender and racial bias in the code generated by ChatGPT,

raising serious questions about the responsibility and fairness

of such models.

Different from most existing works, we collect and employ

large-scale datasets collected from multiple social media plat-

forms to evaluate the coding performance of a general-purpose

conversation tool, i.e., ChatGPT. In addition to investigating

user responses towards ChatGPT’s coding capabilities, our

study also examines the programming tasks facilitated by

ChatGPT and the ethical concerns of ChatGPT.

III. METHOD

This section presents the proposed scalable crowdsourcing

data-driven framework by introducing how to collect data of

interest, how to analyze data, and how to interpret findings.

A. Overview of the Proposed Framework

Figure 2 presents the overview of the proposed framework.

It consists of three primary components: Keyword Expansion

and Selection, Data Collection, and Data Analytics and Pat-

tern Recognition. Contrasting with the traditional user study

oriented research, crowdsourcing frameworks are more flexible

and scalable, facilitating the examination of a large population

over an extended time frame [22]. We will explore each

component thoroughly, assessing the efficacy of LLMs in the

realm of code generation.

B. Keyword Selection for Software Development

To ensure the quality of the collected data, we employ a

hybrid approach that combines data-driven keyword expansion

and expert-based keyword selection. This approach ensures

that the data is comprehensive and precise, eliminating the risk

of bias or incompleteness in the selection of query keywords.

As ChatGPT is one of the most popular LLMs that supports

code generation, we use ChatGPT as the seed keyword to

sample Twitter streams, harvesting tweets that mention this

term. We then perform topic modeling to determine whether

a coding-related topic is present. If a coding-related topic

is observed, we add the words belonging to this topic to

the expanded keyword set. If a coding-related topic is not

observed, we conduct a co-occurrence word analysis and

calculate the semantic similarity with the word coding to

expand the candidate keywords.

However, the data-driven keyword expansion method may

result in false positives, i.e., keyword candidates irrelevant to

AI-based code generation may also be included. Therefore,

we manually examine all recommended keyword candidates

to ensure the quality of the collected data. We first filter

out irrelevant keywords and propose multiple combinations

of keywords to control the precision of data collection. For

example, instead of collecting all postings containing Chat-
GPT, collecting postings containing both ChatGPT and coding
makes the retrieved data more accurate and representative.

Specifically, we leverage Twitter Streaming APIs to sample

tweet streams containing the keyword ChatGPT for over 55

hours. In total, we collect 158,452 tweets, including origi-

nal tweets, retweets, and replies. After removing duplicate

tweets, we had 63,716 unique tweets. We then apply the

latent Dirichlet allocation (LDA) [23] model to infer topics

based on these unique tweets, with the hope of discovering

programming-related topics. We evaluate the number of topics

ranging from 1 to 30 and find that the convergence score

achieves a relatively high and stable value with the number

of topics set as 22. For more details, please see Figure 12.

After examining the 22 topics, we identify one of them as

“Programming,” consisting of the following words: ask, stack,
knew, write, error, diffus, run, python, stabl, scientist, email,
straight, shock, gener, comput, command, use, code, notic,
brain, bug, statement, think, dead, question, admit, happen,
result, and overflow.

Combining the words in the topic of Programming, we come

up with the following keyword list – algorithm, algorithms,
bug, bugs, c#, c++, code, coding, command, commands, com-
piler, computing, debug, debugging, error, interpreter, java,
javascript, libraries, php, program, programming, python, r,
Ruby, shell, software, sql, stack overflow, swift, test, testing,
typescript – to crawl ChatGPT related code generation posts.

C. Data Collection

Based on the above carefully curated keywords, we leverage

two social media platforms, i.e., Twitter and Reddit to collect

data for further analytics.

1) Twitter Data: Instead of relying on Twitter Streaming

APIs, we opt to use the Twitter Historical Data Search APIs

to create our Twitter dataset for the following reasons: 1)

The streaming data is time-sensitive, making it impossible to

retrieve older data from the debut of ChatGPT if the streaming

data collection was not be launched at that time; 2) Examining

only the latest data (e.g., after Feb 1, 2023) could introduce

bias, as we cannot determine when ChatGPT’s code generation

performance was most widely discussed on social media. On

the other hand, the historical tweets span the entire evolution

of ChatGPT and provide a sample of user comments since its

release, enhancing the representativeness and completeness of

the crowdsourced opinions and feedback.

Twitter provides two APIs that allow searching for historical

data: the 30-Day Search API1 enables access to data from the

previous 30 days, while the Full-archive Search API2 permits

access to tweets from as far back as 2006, the year the first

tweet was made. Given that ChatGPT was first introduced

on November 30, 2022, we choose to use the Full-archive

Search API to extract data. We specifically utilized Twitter’s

Academic Research API, known for its capability of executing

full-archive tweet searches, to gather data related to ChatGPT

from November 30, 2022, to February 1, 2023. Our search

was meticulously designed only to include English tweets and

exclude retweets, as indicated by the parameter “-is:retweet

lang:en.” In addition to the text of the tweets, we also collect

1https://tinyurl.com/2s4xt8r7
2https://tinyurl.com/ehbsjx6v

878

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2023 at 16:19:04 UTC from IEEE Xplore. Restrictions apply.

Topic Model

1. Keyword Expansion and Selection

Expert

K
eyw

ords

2. Data Collection

Examine

Generate

3. Data Analytics and Pattern Recognition

Text Data

OCR

What are the most popular
programming languages in
ChatGPT usage?
What programming purposes are
people using ChatGPT for?
What is the temporal distribution
of the discussion on ChatGPT
code generation?
How do stakeholders perceive
ChatGPT code generation?
What are the prompts to generate
code?
What is the quality of the
code generated by ChatGPT?
Does the generated code present
any ethical issues?

Seed
Keyword

Keywords in
Coding Topic

Keywords by
Experts

Twitter Data

Reddit Data

Full-archive Search API

Pushshift Reddit API

programming, bugs,
c#, c++, java

......

/r/ChatGPT,
/r/coding, /r/github,

/r/programming

Social Data

Image Data

Spatio-temporal
Distribution

Programming
lang. analysis

Topic Discovery

Sentiment
Analysis

Natural language processing (NLP)

Prompt

Code

ChatGPT

Code Quality
Evaluation

Public Dataset
Release

Keyword
Visualization

Code AnalyticsSocial Data

Fig. 2. Overview of the proposed crowdsourcing framework to investigate the programming capabilities of ChatGPT

related media information from Twitter, including images, to

enhance our analysis. For this study, we compiled a total of

316K tweets posted between December 1, 2022, and January

31, 2023.

2) Reddit Data: Unlike Twitter, where the structure is

based on users following one another, Reddit is structured

around communities where posts on similar topics are grouped

together. These communities are referred to as “subreddits”

on Reddit. For instance, the subreddit /r/aww is a community

where users share cute and cuddly pictures. The initial posts

on Reddit are known as “submissions,” and the responses to

these posts are called “comments.”

To assess the code generation ability of ChatGPT within

the Reddit community, our attention is concentrated on

four notable subreddits: /r/ChatGPT, /r/coding, /r/github,

and /r/programming. We gather posts from these subred-

dits using the Search Reddit Submissions Endpoint (/red-

dit/search/submission) available through the Pushshift Reddit

API [24]. Just like with Twitter data, we also collect multi-

media data such as images embedded in Reddit posts. For the

sake of this research, we have compiled 3.2K Reddit posts

made between December 1, 2022, and January 31, 2023, to

examine ChatGPT’s code generation proficiency.

D. Data Analytics and Pattern Recognition

We deploy natural language processing and image under-

standing techniques to uncover insights and identify patterns.

1) Text Based Topic Discovery: To attain a comprehensive

understanding of ChatGPT’s deployment in code generation

across social media platforms, we resort to latent Dirichlet

allocation (LDA) [23], a widely utilized technique for topic

modeling. This approach reveals underlying topics hidden

within the collected tweets and Reddit posts. Each tweet or

post is regarded as an individual document, while the entire

assembly forms the corpus. During text preprocessing, we

implement standard procedures such as discarding stop words

and frequently occurring terms like ChatGPT, in addition to

tokenizing and lemmatizing words. We then carry out a term

frequency-inverse document frequency (TF-IDF) analysis on

the collated documents to construct a TF-IDF-based corpus.

LDA models are subsequently employed to unearth latent

topics within this corpus. To determine the optimal number

of topics, we use the Cv metric, consistent with prior research

centered on large-scale social data analysis [25], [26]. This

metric, which amalgamates normalized pointwise mutual in-

formation (NPMI) and cosine similarity [27], is acknowledged

as one of the most efficacious coherence measures.

Given that Twitter allows users to utilize #hashtags to

indicate related topics and enhance visibility through searches,

879

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2023 at 16:19:04 UTC from IEEE Xplore. Restrictions apply.

we also present the distribution of #hashtags in the collected

tweets. However, as #hashtags are rarely used on Reddit, we

do not perform this analysis for Reddit submissions.

2) Image Understanding: Given that ChatGPT operates

as a text generation model, it is expected that a majority

of images associated with it, especially those pertaining to

code generation, shared across social media platforms, will

be text-rich. To augment the practicality of these images and

streamline their processing for subsequent tasks, we suggest

the deployment of an Optical Character Recognition (OCR)

technique to transmute the assembled images into text. We

evaluate multiple OCR methodologies, including the OpenCV-

backed pytesseract3 and the deep learning-based easyOCR4,

on our image dataset. Following a thorough evaluation of the

OCR detection results, we choose easyOCR as the tool for the

precise identification and extraction of text from the images.

3) Code Reconstruction from Image: To reconstruct the

code generated by ChatGPT, it is crucial to identify the images

that contain generated code. After examining the screenshots

of coding snippets, we found that all ChatGPT-generated code

snippets contained the keyword Copy code in the top-right

corner of the coding block, as shown in Figure 1. Therefore,

we select all images containing the Copy code keyword for

further analysis.

We propose two methods to recover the code generated by

ChatGPT. The first one is to extract the code directly from the

OCR results. We found that it is crucial to address any inden-

tation issues for indentation-sensitive programming languages,

such as Python, as a high percentage of errors can occur

due to improper indentation. However, automatically indenting

any given code can be a complex and challenging task. A

simple script that looks for loops and specific statements to

increase and decrease the indentation count does not work on

all codes, especially if the code has multiple indentation styles

and conditional statements.

An alternative method to obtain the code is reproducing it

using the identical prompt. Specifically, we can identify the

prompt and input it into ChatGPT web services5 to generate

the code. Once we have downloaded the newly produced code,

we can assess and evaluate it. In our study, we adopt this

reliable method to reconstruct the code generated by ChatGPT.

4) Sentiment Analysis: Considering that ChatGPT may

elicit a wide range of emotions in the context of code gen-

eration, we believe that the traditional sentiment categories

of positive, negative, and neutral might not encompass all

the emotions involved. To accurately represent the varied and

intricate emotions conveyed in the remarks of social media

users, we decide to classify them into more comprehensive

emotions: happy, angry, surprise, sad, and fear. In order to

accomplish this, we employ Text2Emotion [28], a Python

package proficient in scrutinizing sentiments and categorizing

them into the five emotions mentioned above.

3https://pypi.org/project/pytesseract/
4https://github.com/JaidedAI/EasyOCR
5https://openai.com/blog/chatgpt/

5) Code Quality Evaluation: To assess the quality of the

code generated by ChatGPT, we are utilizing Flake8 [29],

which is a wrapper around PyFlakes, pycodestyle, and Ned

Batchelder’s McCabe script. Flake8 allows the use of any

of these tools by launching Flake8, and it assigns a unique

code number to each error code. The output of warnings

and errors is displayed per file. We choose Flake8 as our

evaluation tool because it is one of the most powerful and

flexible tools available, providing a wide range of error codes

while remaining fast to run checks. Flake8 is particularly

well-suited for identifying correctness and whitespace-related

issues, making it an ideal choice for our purposes.

IV. EVALUATION AND FINDINGS

In this section, we present the evaluation results and high-

light our findings on the performance of code generation by

ChatGPT. We summarize the topics discussed in social media

posts, and the strengths and weaknesses of ChatGPT’s code

generation capabilities.

A. Programming Language Distribution

ChatGPT supports code generation for multiple program-

ming languages. We illustrate the popularity of the top 12

programming languages across Twitter and Reddit in Figure

3. We can see that Python is the most popular language among

both communities and far ahead of other languages. Obviously,

python has become the top 1 program language in many fields,

such as artificial intelligence, machine learning, data analytics,

automation, scientific computing, and others. JavaScript, R,

and Shell/Bash, among the most popular programming lan-

guages nowadays, are also well-supported by ChatGPT.

Fig. 3. Programming language distribution

B. Topics Related to Code Generation

We generate topics for the tweets containing keyword Chat-
GPT and programming related words using the LDA model.

Based on the coherence score presented in Figure 4, we select

17 topics finally. The 17 topics and the word list of each topic

are presented in Table II (see Appendix B). The topic modeling

results indicate that ChatGPT has been used for different

purposes regarding code generation, such as debugging codes

(Topic 9 and Topic 17), testing codes/algorithms (Topic 5

and Topic 16), preparing programming interviews (Topic 2

880

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2023 at 16:19:04 UTC from IEEE Xplore. Restrictions apply.

and Topic 4), working on programming-related assignments

(Topic 3 and Topic 6), and other related tasks. Twitter users

also conveyed negative sentiments regarding ChatGPT’s code

generation capabilities (Topic 1).

Fig. 4. Coherence scores of LDA with different number of topics

To further investigate the implications and impacts of Chat-

GPT on different AI technologies, applications, and industries,

we extract hashtag-based topics, which are shown in Figure 5.

The hashtags we use include: #AI, #OPENAI, #Artificialin-

telligence, #Programming, #Python, #Coding, and others. We

group the hashtags into five clusters: ChatGPT, AI & ML &

DS, Company, Programming, and Other Tech. Based on the

topic frequency in Figure 5, ChatGPT has a great impact on

AI and its related fields. Both academia and IT industry need

to pay attention to this new technology.

Fig. 5. Hashtag-based topics. We exclude the 35.4% ratio of the #ChatGPT
during visualization to prevent it from overpowering other topics

C. Temporal Distribution

Temporal analysis can be used to examine the popularity

over time. Figure 6 visualizes the daily distribution of posts on

Twitter (blue) and Reddit (yellow) related to ChatGPT’s code

generation in the first two months after its launch. ChatGPT

discussion spread faster on Twitter than on Reddit. We observe

a peak of the ChatGPT code generation on Twitter and Reddit

at the end of the first week of the release of ChatGPT. The

popularity decreased from the second week, but somehow still

very popular on both platforms. Even after two months, the

attention on ChatGPT is still stable, indicating ChatGPT is

helpful for code generation.

Fig. 6. Daily distribution of posts related to ChatGPT’s code generation in
the first two months after its launch

D. Sentiment on Code Generation

To enable fine-grained sentiment analysis, we leverage

Text2Emotion [28] to categorize the emotions on ChatGPT’s

code generation into five distinct groups: happy, angry, sur-
prise, sad, and fear. Figure 7 presents the sentiment anal-

ysis results on eight programming languages (i.e., Python,

JavaScript, R, Shell, SQL, C++, Java, and C#) across two

social media platforms (i.e., Twitter and Reddit).

Overall, fear emerges as the dominant emotion across both

social media platforms when discussing the eight program-

ming languages referenced above. The pervasive expression of

fear concerning code generation may be attributed to concerns

over job security. This is likely a response to the impressive

programming capabilities already demonstrated by models like

ChatGPT. Similarly, Tate et al. [30] reported that the growing

use of LLMs to convert natural language descriptions into

computer code had raised concerns about its implications for

the existing software developer job market and the broader

software industry.

Another factor potentially contributing to this fear is the

perceived opacity and limited expandability of ChatGPT. In

other words, there is a general uncertainty about how Chat-

GPT has achieved its coding writing intelligence (especially

considering that ChatGPT is not an open-source model) and

how it might evolve in the future. The sense of unknown and

uncertainty might amplify the fears of those using ChatGPT

for coding purposes.

On the contrary, happy and angry tend to be the least

frequently expressed sentiments among Twitter and Reddit

users when discussing most programming languages. Upon

comparing the sentiment analysis results across both social

media platforms, we observe a strikingly similar pattern for

all programming languages – with the exception of SQL and

C++. Interestingly, Reddit users discussing SQL demonstrate a

higher incidence of sad compared to their Twitter counterparts.

As for C++, Reddit discourse revealed a greater prevalence of

happy compared to Twitter.

E. A Public Dataset of Prompts and Generated Code

From the OCR results of Twitter images, we identify and ex-

tract 332 prompts covering multiple programming languages,

such as Python, JavaScript, and C++. Figure 8 provides a

wordcloud overview of all extracted prompts, where Python-

related questions are the most common. In particular, Twitter

881

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2023 at 16:19:04 UTC from IEEE Xplore. Restrictions apply.

(a) Python (b) JavaScript (c) R (d) Shell

(e) SQL (f) C++ (g) Java (h) C#

Fig. 7. Sentiment analysis results on code generation for eight programming languages

users prefer words such as write, code, function, and program
when constructing their coding prompts.

We construct a dataset of .py files for all Python-related

prompts, with each .py file containing the prompt and the

corresponding code generated by ChatGPT. Figure 9 shows

a sample .py file from the dataset, where the prompt is

commented at the beginning of the file. The complete Python

dataset is publicly available at https://shorturl.at/oEMN2.

Fig. 8. WordCloud of prompts

F. Code Quality Evaluation

We submit the Python code snippets generated by ChatGPT

to Flake8 as individual .py files to check for quality and errors.

Flake8 identifies the error codes for each file, along with the

position and description of the error. After evaluating the code

snippets using Flake8, we find that the majority of the errors

Fig. 9. A sample in the public dataset of prompts (Line 3) and generated
code (Line 4 - Line 17)

are pycodestyle errors, with code E (79%), followed by code

W (18.52%). The least number of errors are attributed to

Flake8 with code F (2.47%). Among the unique error codes,

there are 13 for E, with the majority of errors linked to code

E501 (line too long). Additionally, there are five unique W

codes and three unique F codes. Table I provides a detailed

summary of the evaluation results, including the percentage of

each Flake8 code for the overall evaluation.

G. Ethical Issues of Generated Code

When examining the images shared on platforms like Twit-

ter and Reddit, we come across ethical concerns related to

the code generated by ChatGPT. For instance, if users directly

request ChatGPT to predict an individual’s seniority at work or

evaluate their abilities as a scientist based on race and gender

882

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2023 at 16:19:04 UTC from IEEE Xplore. Restrictions apply.

TABLE I
CODE QUALITY RESULTS BY FLAKE8

Code Description Percentage

E501 line too long (e.g., 114 >79 characters) 21.40%
E231 missing whitespace after “,” 18.93%
W293 blank line contains whitespace 12.35%
E302 expected 2 blank lines, found 1 11.52%
E402 module level import not at top of file 6.58%
E305 expected 2 blank lines after class, found 1 5.76%
E265 block comment should start with “#” 5.35%
E999 SyntaxError: invalid syntax 2.88%
W292 no newline at end of file 2.06%
E227 missing whitespace around bitwise or shift operator 2.06%
W191 indentation contains tabs 1.65%
E101 indentation contains mixed spaces and tabs 1.65%
F401 ’torch’ imported but unused 1.65%
E261 at least two spaces before inline comment 1.23%
W391 blank line at end of file 1.23%
W291 trailing whitespace 1.23%
E225 missing whitespace around operator 0.82%
F821 undefined name “output value” 0.41%
F811 redefinition of unused “pymesh” from line 5 0.41%
E902 TokenError: EOF in multi-line statement 0.41%
E741 ambiguous variable name “I” 0.41%

information, ChatGPT will decline to provide an answer

since it goes against OpenAI’s ethical guidelines. However,

there have been instances where ChatGPT was instructed to

compose a Python function for predicting someone’s seniority

or assessing their competence as a scientist. Unfortunately,

reports indicate that ChatGPT generated code that exhibited

biases related to demographics. Figure 10 and Figure 11

demonstrate examples of such biased code.

Fig. 10. Write a Python function to predict seniority based on race and gender

V. CONCLUSION

This paper presents a framework for exploring the code

generation capabilities of ChatGPT through the analysis of

crowdsourced data on Twitter and Reddit. The results show

that Python and JavaScript are the most frequently discussed

programming languages on social media and that ChatGPT

is used in a variety of code generation domains, e.g., debug-

ging codes, preparing programming interviews, and solving

Fig. 11. Write a Python function to check if someone would be a good
scientist based on their race and gender

academic assignments. Sentiment analysis reveals that people

generally have fears about the code generation capabilities of

ChatGPT, rather than feeling happy, angry, surprised, or sad.

The study also includes the construction of a code generation

prompt dataset, which has been made publicly available, and

an evaluation of the quality of code generated by ChatGPT

using Flake8. We hope this work provides valuable insights

into the adoption of ChatGPT in software development and

programming education.

APPENDIX

A. Coherence Scores of LDA with Different Number of Topics

One of the most important steps for applying topic modeling

such as LDA is to select an appropriate number of topics

contained by the corpus [31]. The reason is that choosing too

few topics will produce over-broad topics while choosing too

many topics will lead to lots of overlapping between topics. In

this study, we choose the Cv metric, a widely used coherence

measurement to decide the optimal number of topics in our

corpus. Topic coherence scores a single topic by combining

normalized pointwise mutual information (NPMI) and the

cosine similarity between words in the topic [27]. The higher

the coherence score, the higher the quality of the generated

topics; however, low-quality topics may be composed of highly

unrelated words that cannot fit into another topic, leading to

a low coherence score [27]. In our corpus, we evaluated the

topic numbers ranging from one to thirty with 500 passes,

and we repeated the experiments five times in each step when

generating the topics to avoid random errors in Cv metric.

Figure 12 presents the evaluation results on all the tweets

containing keyword ChatGPT. In this figure, the horizontal

axis indicates the number of topics, the vertical axis indicates

the coherence score, the top in the shadow represents the max

coherence score and the bottom represents the min coherence

score with the number of topics set differently. Since either

the selected number of topics (k) is too big (i.e., k > 30)

or too small (i.e., k<5) will make the topic interpretation

problematic, we finally selected 22 topics for the highest

coherence score between 5 to 30 topics.

883

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2023 at 16:19:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. Coherence scores of LDA with different number of topics

B. LDA Topics Related to Code Generation on Twitter

Table II illustrates the 17 topics inferred by the LDA model

from the fine-toned ChatGPT’s code generation related tweets.

We provide the first 40 words for each topic to demonstrate

the most common words. Our analysis shows that ChatGPT

has been utilized for various purposes in code generation,

including code writing and debugging (Topics 5, 9, and

11), preparing for programming interviews (Topics 2 and 4),

working on programming-related assignments (Topics 3 and

6), and other related tasks.

REFERENCES

[1] M. E. Kauffman and M. N. Soares, “Ai in legal services: new trends in ai-
enabled legal services,” Service Oriented Computing and Applications,
vol. 14, no. 4, pp. 223–226, 2020.

[2] R. Louie, A. Coenen, C. Z. Huang, M. Terry, and C. J. Cai, “Novice-ai
music co-creation via ai-steering tools for deep generative models,” in
Proceedings of the 2020 CHI conference on human factors in computing
systems, 2020, pp. 1–13.

[3] S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot: How
programmers interact with code-generating models,” 2022. [Online].
Available: https://arxiv.org/abs/2206.15000

[4] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs
experience: Evaluating the usability of code generation tools powered
by large language models,” in Extended Abstracts of the 2022 CHI
Conference on Human Factors in Computing Systems, ser. CHI EA
’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3491101.3519665

[5] M. Aljanabi, M. Ghazi, A. H. Ali, S. A. Abed et al., “Chatgpt: Open
possibilities,” Iraqi Journal For Computer Science and Mathematics,
vol. 4, no. 1, pp. 62–64, 2023.

[6] L. Avila-Chauvet, D. Mejı́a, and C. O. Acosta Quiroz, “Chatgpt as a
support tool for online behavioral task programming,” Available at SSRN
4329020, 2023.

[7] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung et al., “A multitask, multilingual, multimodal
evaluation of chatgpt on reasoning, hallucination, and interactivity,”
arXiv preprint arXiv:2302.04023, 2023.

[8] J. Li, Y. Wang, M. R. Lyu, and I. King, “Code completion
with neural attention and pointer networks,” in Proceedings of
the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial
Intelligence Organization, 7 2018, pp. 4159–4165. [Online]. Available:
https://doi.org/10.24963/ijcai.2018/578

[9] Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang,
“A grammar-based structural cnn decoder for code generation,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, no. 01, pp. 7055–7062, Jul. 2019. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/4686

[10] V. Raychev, M. Vechev, and E. Yahav, “Code completion with
statistical language models,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 419–428. [Online]. Available: https://doi.org/10.
1145/2594291.2594321

[11] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang,
“Treegen: A tree-based transformer architecture for code generation,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 05, pp. 8984–8991, Apr. 2020. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/6430

[12] M. Ciniselli, N. Cooper, L. Pascarella, D. Poshyvanyk, M. D. Penta,
and G. Bavota, “An empirical study on the usage of BERT models
for code completion,” CoRR, vol. abs/2103.07115, 2021. [Online].
Available: https://arxiv.org/abs/2103.07115

[13] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[14] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[15] C. S. Xia and L. Zhang, “Conversational automated program repair,”
arXiv preprint arXiv:2301.13246, 2023.

[16] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis of
the automatic bug fixing performance of chatgpt,” arXiv preprint
arXiv:2301.08653, 2023.

[17] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020, pp.
1433–1443.

[18] E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J.
Cai, and M. Terry, “Discovering the syntax and strategies of natural lan-
guage programming with generative language models,” in Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems,
2022, pp. 1–19.

[19] F. F. Xu, B. Vasilescu, and G. Neubig, “In-IDE code generation
from natural language: Promise and challenges,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 31, no. 2, pp.
1–47, 2022.

[20] D. Castelvecchi, “Are chatgpt and alphacode going to replace program-
mers?” Nature, 2022.

[21] J. Chatterjee and N. Dethlefs, “This new conversational ai model can
be your friend, philosopher, and guide... and even your worst enemy,”
Patterns, vol. 4, no. 1, p. 100676, 2023.

[22] Y. Feng, P. Poralla, S. Dash, K. Li, V. Desai, and M. Qiu, “The impact of
chatgpt on streaming media: A crowdsourced and data-driven analysis
using twitter and reddit,” 2023.

[23] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[24] J. Baumgartner, S. Zannettou, B. Keegan, M. Squire, and J. Blackburn,
“The pushshift reddit dataset,” in Proceedings of the international AAAI
conference on web and social media, vol. 14, 2020, pp. 830–839.

[25] Y. Feng, Z. Lu, Z. Zheng, P. Sun, W. Zhou, R. Huang, and Q. Cao,
“Chasing total solar eclipses on twitter: Big social data analytics
for once-in-a-lifetime events,” in 2019 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[26] Y. Feng, D. Zhong, P. Sun, W. Zheng, Q. Cao, X. Luo, and Z. Lu, “Mi-
cromobility in smart cities: A closer look at shared dockless e-scooters
via big social data,” in ICC 2021-IEEE International Conference on
Communications. IEEE, 2021, pp. 1–6.

[27] M. Röder, A. Both, and A. Hinneburg, “Exploring the space of topic
coherence measures,” in Proceedings of the eighth ACM international
conference on Web search and data mining, 2015, pp. 399–408.

[28] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using
distantly-labeled reviews and fine-grained aspects,” in Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), 2019, pp. 188–197.

[29] T. Ziadé and I. Cordasco, “Flake8: Your tool for style guide enforcement.
2021,” URL: http://flake8. pycqa. org (besucht am 27. 05. 2019).

[30] T. P. Tate, S. Doroudi, D. Ritchie, Y. Xu, and m. w. uci, “Educational
research and ai-generated writing: Confronting the coming tsunami,”
Jan 2023. [Online]. Available: edarxiv.org/4mec3

[31] H. Chen, J. Chen, and H. Nguyen, “Demystifying covid-19 publications:
institutions, journals, concepts, and topics,” Journal of the Medical
Library Association: JMLA, vol. 109, no. 3, p. 395, 2021.

884

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2023 at 16:19:04 UTC from IEEE Xplore. Restrictions apply.

T
A

B
L

E
II

T
H

E
E

X
T

R
A

C
T

E
D

T
O

P
IC

S
U

S
IN

G
T

H
E

L
D

A
T

O
P

IC
M

O
D

E
L

R
an

k
To

pi
c

1
To

pi
c

2
To

pi
c

3
To

pi
c

4
To

pi
c

5
To

pi
c

6
To

pi
c

7
To

pi
c

8
To

pi
c

9
To

pi
c

10
To

pi
c

11
To

pi
c

12
To

pi
c

13
To

pi
c

14
To

pi
c

15
To

pi
c

16
To

pi
c

17

1
ca

p
ac

so
ft

w
ar

ex
am

tu
re

la
n

g
u

ag
st

u
d

en
t

h
ah

a
n

ah
co

d
e

d
ey

w
ri

te
er

ro
r

q
u

e
lo

g
in

st
ab

l
te

st
p

o
u

r
2

b
ro

en
g

in
sc

h
o

o
l

in
te

rv
ie

w
p

ro
g

ra
m

ch
ea

t
w

o
k
e

d
el

et
u

se
so

n
g

co
d

e
n

et
w

o
rk

co
n

si
m

p
li

fi
d

if
fu

s
tr

ad
e

d
e

3
h

ar
d

er
d

ev
el

o
p

m
b

a
p

as
s

co
d

e
te

ac
h

er
co

m
m

it
n

o
b

o
d

i
as

k
p

ro
fe

ss
u

se
v
an

p
ar

a
ru

b
i

co
m

p
an

io
n

co
m

p
u

t
es

t
4

te
st

jo
b

te
st

te
st

te
st

es
sa

y
b

ro
k
e

ev
er

y
b

o
d

i
w

ri
te

p
h

as
e

g
en

er
d

ie
u

n
a

b
ro

k
en

ti
l

fr
ee

q
u

e
5

m
ed

iu
m

re
p

la
c

p
as

s
ca

n
d

id
m

o
d

el
as

si
g

n
an

n
o
y

p
u

b
li

cl
i

w
o

rk
ev

o
lu

t
as

k
ee

n
p

o
r

b
at

tl
sh

ip
m

o
n

ey
p

a
6

sh
it

co
d

e
la

w
fl

u
tt

er
u

se
m

al
ic

i
p

ar
tn

er
ju

d
g

tr
i

g
la

d
cr

ea
t

h
et

b
le

n
d

er
p

ri
m

e
p

lo
t

p
ay

su
r

7
u

n
lo

ck
g

o
o

g
l

in
te

ll
ig

tr
ee

al
g

o
ri

th
m

sc
h

o
o

l
d

ea
r

ro
u

t
h

el
p

te
m

p
te

st
p

o
li

t
la

h
el

p
er

d
is

co
rd

so
ft

w
ar

av
ec

8
p

re
m

iu
m

u
se

p
a

n
ew

sl
et

t
g

en
er

ed
u

c
st

er
o

id
so

m
eb

o
d

i
p

ro
g

ra
m

su
ff

er
p
y

th
o

n
ad

v
en

t
lo

fl
o
w

je
st

p
ai

d
le

9
re

ac
ti

o
n

te
ch

n
o

lo
g

ar
ti

fi
ci

le
ap

h
u

m
an

u
se

fl
i

la
m

b
d

a
ti

m
e

fr
eq

u
en

t
p

ro
g

ra
m

m
es

sa
g

so
ft

w
ar

ta
b

l
m

em
b

er
u

se
u

n
e

1
0

sp
in

p
ro

g
ra

m
p

ro
fe

ss
o

r
co

n
d

u
ct

w
ri

te
m

al
w

ar
to

u
ch

co
ff

e
g

o
o

d
sa

d
co

m
m

an
d

o
cc

u
r

d
el

ra
p

ac
ad

em
ia

se
rv

ic
m

ai
1

1
ey

e
to

o
l

w
h

ar
to

n
eq

u
iv

al
q

u
es

ti
o

n
d

et
ec

t
o

u
ts

o
u

rc
cu

ri
o

s
q

u
es

ti
o

n
co

m
p

et
it

o
r

p
ro

m
p

t
d

o
o

m
as

se
m

b
l

d
o

g
le

ak
cr

y
p

to
q

u
i

1
2

ta
b

th
in

k
p

ro
g

ra
m

h
o

li
d

ay
an

sw
er

cy
b

er
se

cu
r

ci
ta

t
fa

rm
an

sw
er

se
m

an
t

v
id

eo
m

et
co

m
o

ch
ai

n
ci

te
v
er

si
o

n
ce

st
1

3
sa

t
ta

k
e

st
o

ck
fa

il
as

k
k

id
b

is
a

re
v
o

lu
t

k
n

o
w

p
se

u
d

o
m

ak
e

p
ro

fe
ss

io
n

p
er

o
o

d
d

b
ar

e
b

it
co

in
p

ar
1

4
fa

m
il

i
n

ew
u

n
iv

er
s

ex
tr

ac
t

d
at

a
w

ri
te

ap
p

ar
re

ci
p

b
u

g
al

o
r

w
eb

si
t

al
p

h
a

er
ro

r
sk

ip
w

if
e

co
d

e
d

an
1

5
th

o
se

ar
ch

m
ed

ic
d

u
ck

le
ar

n
so

ft
w

ar
g

re
at

es
t

ti
ck

et
g

iv
e

ex
p

o
n

en
ti

ap
p

o
v
er

lo
ad

p
y

th
o

n
m

ak
er

w
al

le
t

p
ri

ce
fa

ir
1

6
w

ri
te

fu
tu

r
g

ra
d

e
b

eh
av

tr
ai

n
te

ac
h

d
is

ap
p

o
in

t
n

o
w

ad
ay

le
ar

n
cr

y
p

to
cu

rr
co

n
te

n
t

p
er

si
st

n
u

t
h

ai
k

u
in

v
es

ti
g

se
ll

fa
it

1
7

li
m

er
ic

k
w

ri
te

b
ar

ex
te

n
t

th
in

k
co

ll
eg

sw
ee

t
en

co
u

n
t

fi
x

au
x

p
o

st
fa

ct
u

al
te

st
fr

am
ew

o
rk

n
ie

co
st

te
st

1
8

h
o

li
y

ea
r

b
u

si
si

ri
so

ft
w

ar
h

o
m

ew
o

rk
p

ar
ti

re
sp

ec
t

p
ro

b
le

m
y

ea
w

an
t

y
al

l
ch

e
co

n
sc

io
u

s
iv

e
cl

o
u

d
ja

i
1

9
ex

p
lo

it
g

o
p

o
se

sl
id

e
u

n
d

er
st

an
d

co
d

e
u

n
tu

k
b

o
th

er
th

in
g

la
y

o
ff

id
ea

an
d

ro
id

ro
b

o
t

st
ar

ri
ch

al
g

o
ri

th
m

p
lu

2
0

ac
ce

p
t

te
ch

m
u

sk
ap

p
l

co
m

p
u

t
ca

re
er

w
h

it
e

st
ra

ig
h

t
g

en
er

ri
d

e
tw

ee
t

n
eu

ra
l

to
d

o
re

v
is

la
u

g
h

b
u

y
co

d
e

2
1

sk
y

n
et

st
ac

k
ed

u
c

an
si

b
l

te
x

t
ac

ad
em

2
0

2
1

in
te

re
st

in
g

li
m

ak
e

ca
v
e

tw
it

te
r

d
at

to
y

w
o

rk
o

u
t

b
il

l
em

p
lo

y
e

v
o

u
2

2
as

se
t

p
eo

p
l

so
ft

w
ar

o
b

se
ss

re
sp

o
n

s
h

ac
k
er

si
r

im
ag

in
ar

i
p
y

th
o

n
sh

am
e

h
el

p
su

b
tl

in
je

ct
la

te
x

m
o

m
m

ak
e

to
u

t
2

3
al

ex
a

am
p

ca
t

se
n

ti
en

t
m

ak
e

p
ro

g
ra

m
p

u
m

p
h

ah
ah

a
d

eb
u

g
st

ra
n

g
b
u

il
d

re
ad

ab
l

h
ac

er
ex

te
n

d
el

ab
o

r
az

u
r

lu
i

2
4

lo
st

m
ak

e
p

u
b

li
c

d
o

ct
o

r
w

ay
se

cu
r

v
o

te
g

ra
b

ex
p

la
in

ex
cl

u
s

sc
ri

p
t

ap
o

lo
g

ar
ti

fi
ci

an
al

y
s

u
n

re
al

p
o
w

er
co

m
m

2
5

w
ee

k
en

d
te

st
li

ce
n

s
st

u
d

io
n

ee
d

p
la

g
ia

r
y

an
g

ir
re

le
v

er
ro

r
se

as
o

n
tr

i
m

en
d

ia
fi

v
e

v
is

it
o

p
en

b
ir

2
6

as
k

p
ro

d
u

ct
q

u
an

tu
m

en
ti

ti
n

at
u

r
te

st
an

y
b

o
d

i
p

ee
r

g
o

o
g

l
ca

w
o

rk
in

fi
n

it
p

u
ed

w
at

er
m

ar
k

g
ra

d
u

at
co

m
p

an
i

so
n

2
7

d
ri

v
e

o
v
er

fl
o
w

co
u

n
tr

i
h

u
n

t
se

e
p

ap
er

o
ld

er
ce

rt
if

ev
en

in
n

er
se

e
p

le
as

d
u

n
e

b
o

o
m

st
af

f
n

ee
d

m
o

n
2

8
re

fr
es

h
w

ay
in

v
es

t
ro

ll
p

eo
p

l
u

n
iv

er
s

th
re

w
co

o
k

te
st

th
eo

ri
ch

ec
k

sc
am

so
b

r
m

o
n

it
o

r
st

re
n

g
th

p
ro

g
ra

m
su

i
2

9
as

p
ec

t
w

o
rl

d
st

ar
tu

p
ex

am
in

cr
ea

t
at

ta
ck

th
ir

d
su

p
er

io
r

fi
n

d
to

u
n

ew
ce

n
te

r
al

g
o

o
b

se
rv

cy
cl

am
az

o
n

b
u

g
3

0
si

n
g

u
la

r
g

en
er

st
re

am
st

re
ss

g
o

o
d

n
ew

sc
re

w
sa

la
ri

n
ee

d
p

ip
el

in
te

x
t

tr
u

m
p

o
u

tl
o

o
k

as
so

ci
it

em
u

se
r

p
eu

t
3

1
co

m
p

re
h

en
s

w
o

rk
te

sl
a

n
at

io
n

o
n

e
h

ac
k

fo
o

tb
al

ad
m

in
so

lv
tr

o
p

ar
ti

cl
cr

aw
l

cr
u

ci
al

b
ro

th
er

k
in

g
to

k
en

b
ie

n
3

2
ca

su
al

se
e

sc
o

re
ja

n
u

ar
i

to
o

l
g

en
er

as
m

er
g

b
et

te
r

d
o

n
n

er
to

o
l

w
h

o
ev

er
p

er
co

o
le

st
o
w

n
m

il
li

o
n

q
u

il
3

3
tr

av
el

ch
an

g
fi

rm
se

c
g

o
o

g
l

th
re

at
cr

im
e

cl
u

b
d

ay
ec

o
sy

st
em

le
t

k
an

m
o

n
k
ey

n
u

m
b

er
co

ac
h

so
u

rc
q

u
an

d
3

4
se

rv
er

ti
m

e
la

b
ru

b
b

er
n

ew
p

u
zz

l
cl

o
n

e
sh

o
w

ca
s

o
n

e
st

re
am

li
n

b
lo

g
fr

ie
n

d
li

es
ta

sa
n

ti
ag

o
g

y
m

w
ay

sa
n

3
5

w
ar

h
el

p
ti

ll
al

o
n

g
si

d
co

nv
er

s
cr

ea
t

b
ri

g
h

t
d

re
am

re
al

li
n

ic
k

b
o

t
co

n
ta

ct
m

u
y

p
re

ss
ac

e
w

ri
te

g
en

3
6

fu
ck

le
ar

n
le

ar
n

p
re

m
ie

r
m

ac
h

in
cr

ac
k

w
o

m
an

co
u

n
te

r
ex

am
p

l
w

ea
th

er
co

p
i

co
d

e
ti

en
sa

n
d

b
o

x
al

e
p

o
si

t
n

o
n

3
7

st
ea

l
sk

il
l

la
w

y
er

m
at

u
r

b
as

e
b

an
m

an
n

er
cu

p
co

p
il

o
t

ev
il

th
re

ad
o

o
k

se
r

li
n

ea
r

d
el

ig
h

t
in

v
es

t
b

o
n

3
8

w
ei

rd
sm

ar
t

fi
n

al
sa

ti
sfi

am
p

em
ai

l
g

u
i

sl
ee

p
w

an
t

m
ea

n
w

h
il

im
ag

n
et

su
b

st
an

ti
re

si
st

g
o

d
m

et
a

ce
tt

3
9

il
e

co
n

tr
ac

t
w

o
rl

d
d

ec
la

r
d

es
ig

n
d

ev
el

o
p

n
u

m
er

w
in

n
er

ac
tu

al
m

o
n

d
g

iv
e

m
en

ta
l

p
o
w

er
p

o
in

t
sc

re
en

sh
o

t
sp

ar
ro

w
g

o
p
y

th
o

n
4

0
v
er

b
at

im
co

m
p

an
i

fo
u

n
d

er
w

is
d

o
m

k
n

o
w

co
n

ce
rn

w
o

rs
t

u
p

co
m

w
ay

ar
is

ch
at

in
si

st
h

ay
at

m
b

o
y

b
il

li
o

n
tu

re

885

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2023 at 16:19:04 UTC from IEEE Xplore. Restrictions apply.

