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Abstract—The recent advancements in Artificial Intelligence,
particularly in large language models and generative models,
are reshaping the field of software engineering by enabling
innovative ways of performing various tasks, such as program-
ming, debugging, and testing. However, few existing works have
thoroughly explored the potential of AI in code generation and
users’ attitudes toward Al-assisted coding tools. This knowl-
edge gap leaves it unclear how Al is transforming software
engineering and programming education. This paper presents
a scalable crowdsourcing data-driven framework to investigate
the code generation performance of generative large language
models from diverse perspectives across multiple social media
platforms. Specifically, we utilize ChatGPT, a popular generative
large language model, as a representative example to reveal its
insights and patterns in code generation. First, we propose a
hybrid keyword word expansion method that integrates words
suggested by topic modeling and expert knowledge to filter
relevant social posts of interest on Twitter and Reddit. Then
we collect 316K tweets and 3.2K Reddit posts about ChatGPT’s
code generation, spanning from Dec. 1, 2022 to January 31,
2023. Our data analytics show that ChatGPT has been used
in more than 10 programming languages, with Python and
JavaScript being the two most popular, for a diverse range
of tasks such as code debugging, interview preparation, and
academic assignment solving. Surprisingly, our analysis shows
that fear is the dominant emotion associated with ChatGPT’s
code generation, overshadowing emotions of happiness, anger,
surprise, and sadness. Furthermore, we construct a ChatGPT
prompt and corresponding code dataset by analyzing the screen-
shots of ChatGPT code generation shared on social media. This
dataset enables us to evaluate the quality of the generated code,
and we have released this dataset to the public. We believe the
insights gained from our work will provide valuable guidance for
future research on Al-powered code generation.

Index Terms—ChatGPT, Coding Generation, Software Engi-
neering, Large Language Models (LLMs), Generative Models,
Social Media

[. INTRODUCTION

Recently, the advancements in large language models
(LLMs) and generative models have revolutionized many ap-
plications, including free text generation, question answering,
and document summarization, enabling a wide range of real-
world services such as Al robot lawyers [1] and AI music
co-creation [2]. The field of coding, which involves writing
tasks in certain programming languages, is also benefiting
from the rapid development of generative LLMs. However,
unlike traditional writing tasks, programming requires strict
adherence to syntax and logic rules, making it more challeng-
ing for generative models to produce high-quality code.

g,j Write the bubble sort in Python

Here is an implementation of bubble sort in Python:

def bubble_sort(numbers):
n = len(numbers)

for i in range(n):

for j in range(n - i - 1):

if numbers > numbers

numbers[3], numbers = numbers , numbers

return numbers

Fig. 1. ChatGPT writes the bubble sort algorithm in Python

Several studies have investigated the potential of LLMs
in software development. For instance, Barke et al. [3] and
Vaithilingam et al. [4] examined user perceptions of generative
models in coding writing. However, many of these studies
are based on case studies, with limited consideration of
broader applications in software development. The emerging
OpenAl’s ChatGPT, a member of the GPT LLM family,
demonstrates promising performance in code generation, at-
tracting widespread attention from stakeholders in software
engineering. As shown in Figure 1, ChatGPT can generate the
bubble sort algorithm in Python with the prompt of “write the
bubble sort in Python.” Some studies have explored the use
of ChatGPT for code generation tasks [5]-[7]. Nonetheless,
these studies did not comprehensively evaluate the overall
effectiveness of ChatGPT as a code generation and assistance
tool on a large scale.

It is challenging to conduct a large-scale study on the
performance of LLMs in code generation due to the following
reasons. First, programming languages exhibit diverse syntax
and are applicable to a wide range of tasks. For instance, SQL
is primarily utilized in database operations, while JavaScript
is commonly used in web programming. Second, code gen-
eration encompasses numerous programming tasks, including
debugging, testing, and programming, for various stakehold-
ers. Moreover, conducting user studies in the lab to investi-
gate the code generation of LLMs can be costly and time-
consuming. Therefore, conducting a comprehensive study on
the performance of LLMs that covers numerous programming
languages, tasks, and stakeholders poses significant challenges.

To address the aforementioned challenges, this paper pro-
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poses a scalable crowdsourcing data-driven framework that
integrates multiple social media data sources to examine
the code generation performance of ChatGPT. The proposed
framework comprises three key components, namely keyword
expansion, data collection, and data analytics. Specifically,
we utilize topic modeling and expert knowledge to identify
all keywords that are relevant to programming in the context
of ChatGPT, thus expanding the seed keyword of ChatGPT.
Using these expanded keywords, we retrieved 316K tweets
and 3.2K Reddit posts related to ChatGPT’s code generation
from December 1, 2022, to January 31, 2023.

Furthermore, we conduct a comprehensive analysis using
multimodal data (text and images) to answer the following
research questions:

1) What are the most popular programming languages in
ChatGPT usage?

2) What programming scenarios, tasks, and purposes are
people using ChatGPT for?

3) What is the temporal distribution of the discussion on
ChatGPT code generation?

4) How do stakeholders perceive ChatGPT code generation?

5) What are the prompts to generate code?

6) What is the quality of the code generated by ChatGPT?

7) Does the generated code present any ethical issues?

To the best of our knowledge, this work is the first large-
scale, systematic study on emerging generative models for
code writing and testing using crowdsourced social data. We
summarize our contributions as follows:

o We have proposed a scalable crowdsourcing and social
data-driven framework for investigating the code genera-
tion capabilities of ChatGPT.

e We have presented a novel hybrid keyword expansion
method that incorporates words recommended by topic
modeling and experts to ensure that most of the related
social media posts are matched during data collection.

e Our study considers multiple social media platforms
(Twitter and Reddit) and multimodal data (text and im-
age) to mitigate potential biases caused by a single data
source or data type.

o We have provided data analytics from multiple perspec-
tives, including topic inference, sentiment analysis, and
data quality measurement.

o« We have built a real-world programming dataset con-
taining the ChatGPT prompt and the associated gener-
ated Python code. This dataset is publicly available at
https://shorturl.at/oEMN?2.

II. RELATED WORK

Automatic Code Generation. Many machine learning and
deep learning models [8], [9] have been explored for automatic
programming. For example, Raychev et al. [10] proposed a
code completion technique using statistical language mod-
els to discover highly rated sentences and recommend code
completion suggestions. Sun et al. [11] introduced a novel
tree-based neural architecture that incorporates grammar rules
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and abstract syntax tree structures into the network, and it
was reported to achieve the best accuracy among all neural
network-based code generation methods. Ciniselli et al. [12]
conducted a detailed empirical study on BERT models for code
completion and evaluated the percentage of perfect predictions
that match developer-written code snippets.

As ChatGPT has gained more attention recently, some
researchers have studied its use for code generation [5]-
[7]. For example, Aljanabi et al. [5] listed automatic code
generation as one of the open possibilities for ChatGPT. Avila
et al. [6] elaborated on the programming potential of ChatGPT
for implementing online behavioral tasks, including concurrent
reinforcement schedules, using HTML, CSS, and JavaScript
code. They created files with the extensions .html, .css, and
.js, encompassing fundamental page structures like headings,
style element integration, and dynamic components.

Automatic Bug Fixing. Unidentified and unsolved bugs in
complex coding are always threatening the correctness and
resilience of software systems. To automatically detect and
fix code bugs and errors, the concept of Automated Program
Repair (APR) has been proposed. Recent advancements in
deep learning have facilitated the integration of APR into
many large language models (LLMs). LLM-based tools such
as Codex [13], CodeBERT [14], and Conversational APR [15]
have been proposed for bug fixing.

A recent study [16] conducted a comparative evaluation
of ChatGPT’s efficiency in bug fixing with other baseline
tools, such as Codex [13]. About 40 of QuixBugs benchmark
problems containing erroneous code were given to ChatGPT
to provide solutions. The experiment results showed that
ChatGPT’s performance was similar to other APR tools like
Codex. However, when given more context information about
the problem through its dialogue box, ChatGPT’s performance
improved, delivering a success rate of 77.5%.

Interactions and Limitations. As programming generation
and assistant tools, such as CodeBERT [14] and IntelliCode
Compose [17], become more widely used, there has been an
increased focus on investigating the usability and interactions
between users and code generation tools [3], [4], [18], [19].
For example, Barke et al. [3] identified two interaction modes
between programmers and code generation tools: acceleration
mode and exploration mode, by observing how 20 program-
mers solved various tasks using the code generation tool
Copilot. Vaithilingam et al. [4] performed a study on 24 partic-
ipants consisting of different groups of people with minimal
and moderate experience in using Copilot and IntelliSense.
By quantitative and qualitative analysis, they observed that
participants who used Copilot failed to complete tasks more.

Although advanced automatic code generation tools work
fine with simple code logic, it can be challenging to handle
large software engineering projects [20]. For instance, the
development of a web browser involves a deep understanding
of human needs that are challenging to encapsulate within the
confines of simple, machine-readable specifications, which Al
typically employs to produce code [20]. In addition, ethical
concerns about code generation models have begun to surface.
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For example, Chatterjee and Dethlefs [21] found evidence of
gender and racial bias in the code generated by ChatGPT,
raising serious questions about the responsibility and fairness
of such models.

Different from most existing works, we collect and employ
large-scale datasets collected from multiple social media plat-
forms to evaluate the coding performance of a general-purpose
conversation tool, i.e., ChatGPT. In addition to investigating
user responses towards ChatGPT’s coding capabilities, our
study also examines the programming tasks facilitated by
ChatGPT and the ethical concerns of ChatGPT.

III. METHOD

This section presents the proposed scalable crowdsourcing
data-driven framework by introducing how to collect data of
interest, how to analyze data, and how to interpret findings.

A. Overview of the Proposed Framework

Figure 2 presents the overview of the proposed framework.
It consists of three primary components: Keyword Expansion
and Selection, Data Collection, and Data Analytics and Pat-
tern Recognition. Contrasting with the traditional user study
oriented research, crowdsourcing frameworks are more flexible
and scalable, facilitating the examination of a large population
over an extended time frame [22]. We will explore each
component thoroughly, assessing the efficacy of LLMs in the
realm of code generation.

B. Keyword Selection for Software Development

To ensure the quality of the collected data, we employ a
hybrid approach that combines data-driven keyword expansion
and expert-based keyword selection. This approach ensures
that the data is comprehensive and precise, eliminating the risk
of bias or incompleteness in the selection of query keywords.

As ChatGPT is one of the most popular LLMs that supports
code generation, we use ChatGPT as the seed keyword to
sample Twitter streams, harvesting tweets that mention this
term. We then perform topic modeling to determine whether
a coding-related topic is present. If a coding-related topic
is observed, we add the words belonging to this topic to
the expanded keyword set. If a coding-related topic is not
observed, we conduct a co-occurrence word analysis and
calculate the semantic similarity with the word coding to
expand the candidate keywords.

However, the data-driven keyword expansion method may
result in false positives, i.e., keyword candidates irrelevant to
Al-based code generation may also be included. Therefore,
we manually examine all recommended keyword candidates
to ensure the quality of the collected data. We first filter
out irrelevant keywords and propose multiple combinations
of keywords to control the precision of data collection. For
example, instead of collecting all postings containing Chat-
GPT, collecting postings containing both ChatGPT and coding
makes the retrieved data more accurate and representative.

Specifically, we leverage Twitter Streaming APIs to sample
tweet streams containing the keyword ChatGPT for over 55
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hours. In total, we collect 158,452 tweets, including origi-
nal tweets, retweets, and replies. After removing duplicate
tweets, we had 63,716 unique tweets. We then apply the
latent Dirichlet allocation (LDA) [23] model to infer topics
based on these unique tweets, with the hope of discovering
programming-related topics. We evaluate the number of topics
ranging from 1 to 30 and find that the convergence score
achieves a relatively high and stable value with the number
of topics set as 22. For more details, please see Figure 12.
After examining the 22 topics, we identify one of them as
“Programming,” consisting of the following words: ask, stack,
knew, write, error, diffus, run, python, stabl, scientist, email,
straight, shock, gener, comput, command, use, code, notic,
brain, bug, statement, think, dead, question, admit, happen,
result, and overflow.

Combining the words in the topic of Programming, we come
up with the following keyword list — algorithm, algorithms,
bug, bugs, c#, c++, code, coding, command, commands, com-
piler, computing, debug, debugging, error, interpreter, java,
Jjavascript, libraries, php, program, programming, python,
Ruby, shell, software, sql, stack overflow, swift, test, testing,
typescript — to crawl ChatGPT related code generation posts.

C. Data Collection

Based on the above carefully curated keywords, we leverage
two social media platforms, i.e., Twitter and Reddit to collect
data for further analytics.

1) Twitter Data: Instead of relying on Twitter Streaming
APIs, we opt to use the Twitter Historical Data Search APIs
to create our Twitter dataset for the following reasons: 1)
The streaming data is time-sensitive, making it impossible to
retrieve older data from the debut of ChatGPT if the streaming
data collection was not be launched at that time; 2) Examining
only the latest data (e.g., after Feb 1, 2023) could introduce
bias, as we cannot determine when ChatGPT’s code generation
performance was most widely discussed on social media. On
the other hand, the historical tweets span the entire evolution
of ChatGPT and provide a sample of user comments since its
release, enhancing the representativeness and completeness of
the crowdsourced opinions and feedback.

Twitter provides two APIs that allow searching for historical
data: the 30-Day Search API' enables access to data from the
previous 30 days, while the Full-archive Search API> permits
access to tweets from as far back as 2006, the year the first
tweet was made. Given that ChatGPT was first introduced
on November 30, 2022, we choose to use the Full-archive
Search API to extract data. We specifically utilized Twitter’s
Academic Research API, known for its capability of executing
full-archive tweet searches, to gather data related to ChatGPT
from November 30, 2022, to February 1, 2023. Our search
was meticulously designed only to include English tweets and
exclude retweets, as indicated by the parameter “-is:retweet
lang:en.” In addition to the text of the tweets, we also collect

Uhttps://tinyurl.com/2s4xt8r7
Zhttps://tinyurl.com/ehbsjx6v
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2. Data Collection
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Fig. 2. Overview of the proposed crowdsourcing framework to investigate the programming capabilities of ChatGPT

related media information from Twitter, including images, to
enhance our analysis. For this study, we compiled a total of
316K tweets posted between December 1, 2022, and January
31, 2023.

2) Reddit Data: Unlike Twitter, where the structure is
based on users following one another, Reddit is structured
around communities where posts on similar topics are grouped
together. These communities are referred to as “subreddits”
on Reddit. For instance, the subreddit /r/aww is a community
where users share cute and cuddly pictures. The initial posts
on Reddit are known as “submissions,” and the responses to
these posts are called “comments.”

To assess the code generation ability of ChatGPT within
the Reddit community, our attention is concentrated on
four notable subreddits: /r/ChatGPT, /r/coding, /r/github,
and /r/programming. We gather posts from these subred-
dits using the Search Reddit Submissions Endpoint (/red-
dit/search/submission) available through the Pushshift Reddit
API [24]. Just like with Twitter data, we also collect multi-
media data such as images embedded in Reddit posts. For the
sake of this research, we have compiled 3.2K Reddit posts
made between December 1, 2022, and January 31, 2023, to
examine ChatGPT’s code generation proficiency.
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D. Data Analytics and Pattern Recognition

We deploy natural language processing and image under-
standing techniques to uncover insights and identify patterns.

1) Text Based Topic Discovery: To attain a comprehensive
understanding of ChatGPT’s deployment in code generation
across social media platforms, we resort to latent Dirichlet
allocation (LDA) [23], a widely utilized technique for topic
modeling. This approach reveals underlying topics hidden
within the collected tweets and Reddit posts. Each tweet or
post is regarded as an individual document, while the entire
assembly forms the corpus. During text preprocessing, we
implement standard procedures such as discarding stop words
and frequently occurring terms like ChatGPT, in addition to
tokenizing and lemmatizing words. We then carry out a term
frequency-inverse document frequency (TF-IDF) analysis on
the collated documents to construct a TF-IDF-based corpus.
LDA models are subsequently employed to unearth latent
topics within this corpus. To determine the optimal number
of topics, we use the C', metric, consistent with prior research
centered on large-scale social data analysis [25], [26]. This
metric, which amalgamates normalized pointwise mutual in-
formation (NPMI) and cosine similarity [27], is acknowledged
as one of the most efficacious coherence measures.

Given that Twitter allows users to utilize #hashtags to
indicate related topics and enhance visibility through searches,
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we also present the distribution of #hashtags in the collected
tweets. However, as #hashtags are rarely used on Reddit, we
do not perform this analysis for Reddit submissions.

2) Image Understanding: Given that ChatGPT operates
as a text generation model, it is expected that a majority
of images associated with it, especially those pertaining to
code generation, shared across social media platforms, will
be text-rich. To augment the practicality of these images and
streamline their processing for subsequent tasks, we suggest
the deployment of an Optical Character Recognition (OCR)
technique to transmute the assembled images into text. We
evaluate multiple OCR methodologies, including the OpenCV-
backed pytesseract® and the deep learning-based easyOCR*,
on our image dataset. Following a thorough evaluation of the
OCR detection results, we choose easyOCR as the tool for the
precise identification and extraction of text from the images.

3) Code Reconstruction from Image: To reconstruct the
code generated by ChatGPT, it is crucial to identify the images
that contain generated code. After examining the screenshots
of coding snippets, we found that all ChatGPT-generated code
snippets contained the keyword Copy code in the top-right
corner of the coding block, as shown in Figure 1. Therefore,
we select all images containing the Copy code keyword for
further analysis.

We propose two methods to recover the code generated by
ChatGPT. The first one is to extract the code directly from the
OCR results. We found that it is crucial to address any inden-
tation issues for indentation-sensitive programming languages,
such as Python, as a high percentage of errors can occur
due to improper indentation. However, automatically indenting
any given code can be a complex and challenging task. A
simple script that looks for loops and specific statements to
increase and decrease the indentation count does not work on
all codes, especially if the code has multiple indentation styles
and conditional statements.

An alternative method to obtain the code is reproducing it
using the identical prompt. Specifically, we can identify the
prompt and input it into ChatGPT web services’ to generate
the code. Once we have downloaded the newly produced code,
we can assess and evaluate it. In our study, we adopt this
reliable method to reconstruct the code generated by ChatGPT.

4) Sentiment Analysis: Considering that ChatGPT may
elicit a wide range of emotions in the context of code gen-
eration, we believe that the traditional sentiment categories
of positive, negative, and neutral might not encompass all
the emotions involved. To accurately represent the varied and
intricate emotions conveyed in the remarks of social media
users, we decide to classify them into more comprehensive
emotions: happy, angry, surprise, sad, and fear. In order to
accomplish this, we employ Text2Emotion [28], a Python
package proficient in scrutinizing sentiments and categorizing
them into the five emotions mentioned above.

3https://pypi.org/project/pytesseract/
“https://github.com/Jaided AI/EasyOCR
5 https://openai.com/blog/chatgpt/
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5) Code Quality Evaluation: To assess the quality of the
code generated by ChatGPT, we are utilizing Flake8 [29],
which is a wrapper around PyFlakes, pycodestyle, and Ned
Batchelder’s McCabe script. Flake8 allows the use of any
of these tools by launching Flake8, and it assigns a unique
code number to each error code. The output of warnings
and errors is displayed per file. We choose Flake8 as our
evaluation tool because it is one of the most powerful and
flexible tools available, providing a wide range of error codes
while remaining fast to run checks. Flake8 is particularly
well-suited for identifying correctness and whitespace-related
issues, making it an ideal choice for our purposes.

IV. EVALUATION AND FINDINGS

In this section, we present the evaluation results and high-
light our findings on the performance of code generation by
ChatGPT. We summarize the topics discussed in social media
posts, and the strengths and weaknesses of ChatGPT’s code
generation capabilities.

A. Programming Language Distribution

ChatGPT supports code generation for multiple program-
ming languages. We illustrate the popularity of the top 12
programming languages across Twitter and Reddit in Figure
3. We can see that Python is the most popular language among
both communities and far ahead of other languages. Obviously,
python has become the top 1 program language in many fields,
such as artificial intelligence, machine learning, data analytics,
automation, scientific computing, and others. JavaScript, R,
and Shell/Bash, among the most popular programming lan-
guages nowadays, are also well-supported by ChatGPT.
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Fig. 3. Programming language distribution

B. Topics Related to Code Generation

We generate topics for the tweets containing keyword Chat-
GPT and programming related words using the LDA model.
Based on the coherence score presented in Figure 4, we select
17 topics finally. The 17 topics and the word list of each topic
are presented in Table II (see Appendix B). The topic modeling
results indicate that ChatGPT has been used for different
purposes regarding code generation, such as debugging codes
(Topic 9 and Topic 17), testing codes/algorithms (Topic 5
and Topic 16), preparing programming interviews (Topic 2
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and Topic 4), working on programming-related assignments
(Topic 3 and Topic 6), and other related tasks. Twitter users
also conveyed negative sentiments regarding ChatGPT’s code
generation capabilities (Topic 1).
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Fig. 4. Coherence scores of LDA with different number of topics

To further investigate the implications and impacts of Chat-
GPT on different Al technologies, applications, and industries,
we extract hashtag-based topics, which are shown in Figure 5.
The hashtags we use include: #AI, #OPENAI, #Artificialin-
telligence, #Programming, #Python, #Coding, and others. We
group the hashtags into five clusters: ChatGPT, Al & ML &
DS, Company, Programming, and Other Tech. Based on the
topic frequency in Figure 5, ChatGPT has a great impact on
Al and its related fields. Both academia and IT industry need
to pay attention to this new technology.
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Fig. 5. Hashtag-based topics. We exclude the 35.4% ratio of the #ChatGPT
during visualization to prevent it from overpowering other topics

C. Temporal Distribution

Temporal analysis can be used to examine the popularity
over time. Figure 6 visualizes the daily distribution of posts on
Twitter (blue) and Reddit (yellow) related to ChatGPT’s code
generation in the first two months after its launch. ChatGPT
discussion spread faster on Twitter than on Reddit. We observe
a peak of the ChatGPT code generation on Twitter and Reddit
at the end of the first week of the release of ChatGPT. The
popularity decreased from the second week, but somehow still
very popular on both platforms. Even after two months, the
attention on ChatGPT is still stable, indicating ChatGPT is
helpful for code generation.
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Fig. 6. Daily distribution of posts related to ChatGPT’s code generation in
the first two months after its launch

D. Sentiment on Code Generation

To enable fine-grained sentiment analysis, we leverage
Text2Emotion [28] to categorize the emotions on ChatGPT’s
code generation into five distinct groups: happy, angry, sur-
prise, sad, and fear. Figure 7 presents the sentiment anal-
ysis results on eight programming languages (i.e., Python,
JavaScript, R, Shell, SQL, C++, Java, and C#) across two
social media platforms (i.e., Twitter and Reddit).

Overall, fear emerges as the dominant emotion across both
social media platforms when discussing the eight program-
ming languages referenced above. The pervasive expression of
fear concerning code generation may be attributed to concerns
over job security. This is likely a response to the impressive
programming capabilities already demonstrated by models like
ChatGPT. Similarly, Tate et al. [30] reported that the growing
use of LLMs to convert natural language descriptions into
computer code had raised concerns about its implications for
the existing software developer job market and the broader
software industry.

Another factor potentially contributing to this fear is the
perceived opacity and limited expandability of ChatGPT. In
other words, there is a general uncertainty about how Chat-
GPT has achieved its coding writing intelligence (especially
considering that ChatGPT is not an open-source model) and
how it might evolve in the future. The sense of unknown and
uncertainty might amplify the fears of those using ChatGPT
for coding purposes.

On the contrary, happy and angry tend to be the least
frequently expressed sentiments among Twitter and Reddit
users when discussing most programming languages. Upon
comparing the sentiment analysis results across both social
media platforms, we observe a strikingly similar pattern for
all programming languages — with the exception of SQL and
C++. Interestingly, Reddit users discussing SQL demonstrate a
higher incidence of sad compared to their Twitter counterparts.
As for C++, Reddit discourse revealed a greater prevalence of
happy compared to Twitter.

E. A Public Dataset of Prompts and Generated Code

From the OCR results of Twitter images, we identify and ex-
tract 332 prompts covering multiple programming languages,
such as Python, JavaScript, and C++. Figure 8 provides a
wordcloud overview of all extracted prompts, where Python-
related questions are the most common. In particular, Twitter
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users prefer words such as write, code, function, and program
when constructing their coding prompts.

We construct a dataset of .py files for all Python-related
prompts, with each .py file containing the prompt and the
corresponding code generated by ChatGPT. Figure 9 shows
a sample .py file from the dataset, where the prompt is
commented at the beginning of the file. The complete Python
dataset is publicly available at https://shorturl.at/oEMN?2.
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Fig. 8. WordCloud of prompts

FE. Code Quality Evaluation

We submit the Python code snippets generated by ChatGPT
to Flake8 as individual .py files to check for quality and errors.
Flake8 identifies the error codes for each file, along with the
position and description of the error. After evaluating the code
snippets using Flake8, we find that the majority of the errors
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Fig. 9. A sample in the public dataset of prompts (Line 3) and generated
code (Line 4 - Line 17)

are pycodestyle errors, with code E (79%), followed by code
W (18.52%). The least number of errors are attributed to
Flake8 with code F (2.47%). Among the unique error codes,
there are 13 for E, with the majority of errors linked to code
E501 (line too long). Additionally, there are five unique W
codes and three unique F codes. Table I provides a detailed
summary of the evaluation results, including the percentage of
each Flake8 code for the overall evaluation.

G. Ethical Issues of Generated Code

When examining the images shared on platforms like Twit-
ter and Reddit, we come across ethical concerns related to
the code generated by ChatGPT. For instance, if users directly
request ChatGPT to predict an individual’s seniority at work or
evaluate their abilities as a scientist based on race and gender
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TABLE 1
CODE QUALITY RESULTS BY FLAKES

Code Description Percentage
E501  line too long (e.g., 114 >79 characters) 21.40%
E231  missing whitespace after “,” 18.93%
W293 blank line contains whitespace 12.35%
E302  expected 2 blank lines, found 1 11.52%
E402  module level import not at top of file 6.58%
E305 expected 2 blank lines after class, found 1 5.76%
E265 block comment should start with “#” 5.35%
E999  SyntaxError: invalid syntax 2.88%
W292  no newline at end of file 2.06%
E227  missing whitespace around bitwise or shift operator 2.06%
WI191 indentation contains tabs 1.65%
E101 indentation contains mixed spaces and tabs 1.65%
F401  ’torch’ imported but unused 1.65%
E261  at least two spaces before inline comment 1.23%
W391 blank line at end of file 1.23%
W291 trailing whitespace 1.23%
E225 missing whitespace around operator 0.82%
F821  undefined name “output_value” 0.41%
F811  redefinition of unused “pymesh” from line 5 0.41%
E902  TokenError: EOF in multi-line statement 0.41%
E741 ambiguous variable name “I” 0.41%

information, ChatGPT will decline to provide an answer
since it goes against OpenAl’s ethical guidelines. However,
there have been instances where ChatGPT was instructed to
compose a Python function for predicting someone’s seniority
or assessing their competence as a scientist. Unfortunately,
reports indicate that ChatGPT generated code that exhibited
biases related to demographics. Figure 10 and Figure 11
demonstrate examples of such biased code.

write a python function to predict seniority based on race and gender

Here is an example of a Python function that predicts seniority based on race and gender:
[7) Copy code
(race:

, gender: str) ->

gender =
gender ==

gender ==

gender ==

Fig. 10. Write a Python function to predict seniority based on race and gender

V. CONCLUSION

This paper presents a framework for exploring the code
generation capabilities of ChatGPT through the analysis of
crowdsourced data on Twitter and Reddit. The results show
that Python and JavaScript are the most frequently discussed
programming languages on social media and that ChatGPT
is used in a variety of code generation domains, e.g., debug-
ging codes, preparing programming interviews, and solving
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Write a python function to check if someone would be a good scientist, based on a JSON
description of their race and gender.

def check_scientist(json_description):

race = json_description["race"]
gender = json_description["gender"]

[ copy code

gender ==

Fig. 11. Write a Python function to check if someone would be a good
scientist based on their race and gender

academic assignments. Sentiment analysis reveals that people
generally have fears about the code generation capabilities of
ChatGPT, rather than feeling happy, angry, surprised, or sad.
The study also includes the construction of a code generation
prompt dataset, which has been made publicly available, and
an evaluation of the quality of code generated by ChatGPT
using Flake8. We hope this work provides valuable insights
into the adoption of ChatGPT in software development and
programming education.

APPENDIX
A. Coherence Scores of LDA with Different Number of Topics

One of the most important steps for applying topic modeling
such as LDA is to select an appropriate number of topics
contained by the corpus [31]. The reason is that choosing too
few topics will produce over-broad topics while choosing too
many topics will lead to lots of overlapping between topics. In
this study, we choose the C',, metric, a widely used coherence
measurement to decide the optimal number of topics in our
corpus. Topic coherence scores a single topic by combining
normalized pointwise mutual information (NPMI) and the
cosine similarity between words in the topic [27]. The higher
the coherence score, the higher the quality of the generated
topics; however, low-quality topics may be composed of highly
unrelated words that cannot fit into another topic, leading to
a low coherence score [27]. In our corpus, we evaluated the
topic numbers ranging from one to thirty with 500 passes,
and we repeated the experiments five times in each step when
generating the topics to avoid random errors in C, metric.
Figure 12 presents the evaluation results on all the tweets
containing keyword ChatGPT. In this figure, the horizontal
axis indicates the number of topics, the vertical axis indicates
the coherence score, the top in the shadow represents the max
coherence score and the bottom represents the min coherence
score with the number of topics set differently. Since either
the selected number of topics (k) is too big (i.e., k > 30)
or too small (i.e., k<5) will make the topic interpretation
problematic, we finally selected 22 topics for the highest
coherence score between 5 to 30 topics.
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B. LDA Topics Related to Code Generation on Twitter

Table II illustrates the 17 topics inferred by the LDA model
from the fine-toned ChatGPT’s code generation related tweets.

We
the
has

provide the first 40 words for each topic to demonstrate
most common words. Our analysis shows that ChatGPT
been utilized for various purposes in code generation,

including code writing and debugging (Topics 5, 9, and

1)

, preparing for programming interviews (Topics 2 and 4),

working on programming-related assignments (Topics 3 and

6),
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3
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and other related tasks.
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