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Figure 1: Overview of our proposed method. DLAgen (a) generates textual content and incorporates visual content to create
the fine-grained annotated dataset. This dataset is used to train MDT (b), which leverages visual, page position, and correctly
ordered text features. The trained MDT model is applied to fine-grained layout analysis of real academic papers (c).

Abstract

Layout analysis of academic papers aims to identify various compo-
nents within unstructured papers, benefiting researchers in quickly
locating and extracting critical information. The effectiveness of
this process depends heavily on the datasets and models used for
training. However, existing datasets often have issues with anno-
tation accuracy, granularity, scale, and acquisition cost. Current
models treat each document image in isolation, ignoring the po-
sition information of a page within the entire paper. To address
these challenges, we propose DLAgen, a method for rapidly, accu-
rately, and cost-effectively generating fine-grained annotated paper
datasets. DLAgen uses context-free grammar to generate textual
content in LaTeX format, and incorporates visual content, such as
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images, tables, and formulas, from real papers, thus creating syn-
thetic papers with accurate annotations. Concurrently, to leverage
the high correlation between page numbers and components in
academic papers and to make better use of textual information,
we introduce MDT, a multimodal academic paper layout analysis
model that utilizes page position information and correctly ordered
text. Experiments show that MDT trained with data generated by
DLAgen achieves higher accuracy in fine-grained layout analysis
of real academic papers compared to existing state-of-the-art mod-
els. The mAP is improved from 85.13 to 88.61, which is a 4.09%
enhancement, validating the effectiveness of our approach. Both
the model and dataset will be released to the public.
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1 Introduction

Document Layout Analysis (DLA) aims to determine components,
such as titles, text, images, tables[23], and others of a document.
By analyzing the layout of academic papers, one can extract im-
portant information, such as author details, formulas, citations,
and beyond. High-quality layout analysis is helpful for the digiti-
zation and knowledge extraction of academic papers, serving as
a foundational task for constructing academic knowledge bases,
enhancing the semantic understanding of academic papers, and
enabling advanced applications such as Retrieval-Augmented Gen-
eration (RAG). Nowadays, document layout analysis has evolved
from rule-based methods to deep learning models based on Vi-
sion Transformers. These models require training on large-scale
datasets[17]. Therefore, data and models are the two key factors
determining the performance of layout analysis.

Regarding data, its quality, granularity, scale, and diversity di-
rectly determine the effectiveness of models. However, existing
datasets have issues in these aspects to varying degrees, rooted in
the limitations of dataset construction methods. In previous meth-
ods of dataset construction, manual annotation offers the advantage
of customizing annotation types. However, the high costs involved
in establishing annotation rules, training annotators, conducting
manual annotation, and reviewing annotated results limit the scale
of datasets. Additionally, imperfect annotation rules, discrepancies
in annotators’ understanding of the rules, and human errors during
manual operations lead to issues in data quality. Another commonly
used approach is semi-automatically aligning PDF documents with
structured formats like XML/LaTeX to locate and categorize doc-
ument components. Nevertheless, the semi-automatic method is
constrained by the availability of structured documents and pre-
defined components. Therefore, proposing a method for rapidly,
accurately, and cost-effectively obtaining fine-grained annotated
academic papers is crucial.

In terms of models, as the demand for granularity in document
layout analysis tasks increases, relying solely on visual modalities
are no longer able to achieve state-of-the-art results. To obtain more
comprehensive features, some works utilize information from other
modalities, such as text and spatial layout. However, all existing
models only utilize features within a single page, neglecting the
importance of a single page’s position information within the entire
multi-page academic paper. Additionally, the method of obtaining
textual information in most models is rather crude, relying on OCR
tools to extract text from entire document images. For academic
papers with complex layouts, this approach often results in text
with incorrect order, impeding the extraction of meaningful text
features. Therefore, developing layout analysis models that leverage
the unique characteristics of academic papers holds significant
potential.

Therefore, we propose DLAgen (Document Layout Analysis
dataset generator), an automatic method for generating fine-grained
annotated academic papers, and MDT (Multimodal Document Trans-
former), a multimodal fine-grained layout analysis model for aca-
demic papers. DLAgen utilizes context-free grammar to generate
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textual content in LaTeX format and integrates visual content, such
as figures, tables, and formulas, from real academic papers to cre-
ate synthetic papers. On this basis, different components in the
generated LaTeX files are assigned colored backgrounds to achieve
precise annotations. The layout, annotation types, and quantity of
the generated papers can all be customized as needed. In addition to
visual information, MDT also incorporates the position information
of individual pages within the entire paper and correctly ordered
textual information within predicted bounding boxes to assist in
layout analysis. Experiments demonstrate that papers generated by
DLAgen are highly consistent with real ones, and MDT trained on
generated data achieves superior performance in layout analysis of
real academic papers compared to SOTA models.

Our contributions are summarized as follows:

e We propose DLAgen, a novel method for automatically gener-
ating fine-grained annotated academic papers with accurate
annotations, addressing limitations in existing datasets re-
garding accuracy, granularity, scale, and construction costs.

e We propose MDT, an effective multimodal fine-grained lay-
out analysis model for academic papers, leveraging visual,
page position, and correctly ordered text information.

e We conduct extensive experiments to demonstrate that data
generated by DLAgen is effective for training layout analysis
models, and MDT surpasses current SOTA models in layout
analysis of real academic papers.

2 Related Works

2.1 Document Layout Analysis Dataset

Document layout analysis datasets consist of document images
and component information, including categories and coordinates,
and are primarily classified into manually annotated and semi-
automatically annotated datasets. Early datasets were mostly man-
ually annotated and limited in quantity. For instance, PRImA[1]
includes 60 document images from magazines and academic pa-
pers, SectLabel[22] contains 347 academic paper images in the field
of computer science, and DSSE-200[32] comprises 200 document
images from magazines, books, and academic papers.

Recently introduced DocLayNet[25] manually annotated 80,863
document images covering various document types, such as aca-
demic papers, patents, manuals, legal documents, tender documents,
and financial documents, with academic papers accounting for
17% of the dataset. Annotation types in this dataset include Cap-
tion, Footnote, Formula, List-item, Page-footer, Page-header, Picture,
Section-header, Table, Text, and Title.

Due to the increasing demand for large-scale datasets, semi-
automatic annotation was widely employed. PubLayNet[34] gener-
ated a large-scale dataset containing over 360,000 document images
by matching PDF and XML formats of academic papers. It anno-
tated five components: Title, Text, Image, Table, and List. Similarly,
DocBank[19] generated a token-level annotated dataset containing
500,000 document images by matching PDF and LaTeX formats of
academic papers. This dataset includes 13 annotation types: Ab-
stract, Author, Caption, Date, Equation, Figure, Footer,List, Paragraph,
Citation, Section, Table, and Title.

PubLayNet, DocBank, and DocLayNet are currently the largest
datasets for document layout analysis, yet each presents specific
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limitations. PubLayNet offers abundant data with accurate anno-
tations but lacks granularity. DocBank has a larger scale and finer
annotation granularity, but token-level annotations do not delin-
eate bounding boxes for components, making it difficult to deter-
mine which tokens form a whole. Although a later version of the
bounding box-level dataset was provided, significant annotation
inaccuracies have been observed (as shown in Appendix D), se-
verely impacting model training. DocLayNet, due to high manual
annotation costs, comprises just over 13,000 academic paper images,
and lacks crucial annotated components in academic papers, such
as Author and Citation.

Before the advent of large-scale datasets, some methods were
proposed to generate annotated documents for model training.
Yang et al.[32] presented two approaches. One involved generating
LaTeX files where titles, text, images, and tables were randomly
arranged. Images and tables were mostly sourced from web searches,
and titles and text from Wikipedia. The other approach involved
annotating a small number of document images and then randomly
replacing their components. He et al.[13] also adopted a similar
method of labeling first and then replacing, with image from the
MS COCO[21] and ImageNet[7] datasets.

2.2 Document Layout Analysis Model

Document layout analysis models based on deep learning utilize
features from different modalities, such as visual, textual, and spatial
layouts. Subsequently, image segmentation[10, 13, 24, 29, 32] or
object detection[2, 11, 12, 16, 18, 26, 30, 31, 33] are employed to
accomplish layout analysis.

MFCN[32] inputs document images into a fully convolutional
network to learn visual features. It averages word embeddings
within a sentence to obtain a sentence embedding, which are used
as the text feature for each pixel within the sentence region. It
then concatenates visual and text features and inputs them into
the image segmentation decoder to obtain segmentation results.
VSR([33] proposes a dual-stream network to extract visual and text
features separately. An adaptive attention module is used to fuse
features of different modalities to generate candidate targets. A
graph neural network models the relationships between these can-
didate targets to produce object detection results. DocFormer[2]
introduces a multimodal attention layer capable of integrating vi-
sual, text, and spatial features. It uses three unsupervised tasks
— Masked Language Modeling (MLM), image reconstruction, and
image-text matching — for model pre-training.

Recently, due to the remarkable success of pre-trained image
transformers(3, 9, 14, 28] in various computer vision tasks, doc-
ument layout analysis, as a fundamental task, is no exception.
DiT[18] utilizes large-scale unlabeled document images to propose
a Masked Image Modeling (MIM)-based self-supervised pre-trained
document image transformer using only visual information. This
model can serve as a backbone for intelligent document tasks. Using
DiT as the visual backbone, LayoutLMv3[16] and VGT[6] further
incorporate textual modality. LayoutLMv3 employs the Masked Lan-
guage Modeling (MLM) pre-training task for the textual modality
to reduce differences between different modal features and adds an
image-text alignment task to further promote interaction between
modalities. VGT, currently the SOTA model, introduces two new
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textual modality pre-training tasks, Masked Grid Language Model-
ing (MGLM) and Segment Language Modeling (SLM), utilizing text
and text coordinate information to assist visual information in com-
pleting document layout analysis. These methods leverage visual,
textual, and spatial information from document images. However,
there are currently no specialized methods targeting academic pa-
pers. We incorporate the unique characteristics of academic papers
into the model design to further enhance the accuracy of layout
analysis for these documents.

3 Method

3.1 Pipeline

The pipeline of the proposed method is illustrated in Figure 1. First,
DLAgen uses context-free grammar, a set of production rules that
define how sentence patterns and keywords can be combined to
form valid sentences, to generate a text-only framework of the
paper. Then, it incorporates images, tables, and formulas from real
papers to create synthetic papers in LaTeX format. Finally, it as-
signs colored backgrounds to various components in the generated
LaTeX files to achieve accurate annotations. This generated data is
used to train MDT, which leverages visual, page position, and cor-
rectly ordered text features for layout analysis. The page position
feature represent the location of a page within the entire document,
which is a unique characteristic of multi-page academic papers. The
text feature is derived from the bounding boxes predicted in the
middle of MDT, thereby ensuring the correct sequence of words.
The trained MDT is then applied to perform fine-grained layout
analysis on real academic papers.

3.2 Document Layout Analysis dataset
generator (DLAgen)

Inspired by Yang et al.[32], we adopt the method of generating
LaTeX files to create a document annotation dataset. The advantages
of LaTeX files are as follows: 1) allows direct visual annotation of
any component; 2) ensures accurate and consistent annotation; and
3) enables the generation of datasets at any scale.

However, there are some shortcomings in their method. First,
the textual content in their LaTeX files is sourced entirely from
Wikipedia. Although visually similar to academic papers, the text
differs significantly from actual academic papers, preventing the
model in the textual modality from learning genuine text features.
Second, their LaTeX files lack components in academic papers, such
as Author, Formula, and Citation, resulting in insufficient granularity
for the generated data. Additionally, the limited variety of LaTeX
templates used leads to a lack of layout diversity, affecting the
generalization ability of the trained models. Finally, their method
only generates pixel-level annotation, which is unsuitable for layout
analysis models based on object detection.

To address these shortcomings, we propose DLAgen. By gen-
erating more realistic textual content, incorporating information
unique to academic papers, enriching the variety of LaTeX tem-
plates, and producing annotation data suitable for object detection,
we aim to improve the training effectiveness and generalization
ability of academic paper layout analysis models. The main steps
to construct DLAgen are as follows, and the workflow of DLAgen
is shown in Figure 2:
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Figure 2: The workflow of DLAgen.

1) Semantic Structure Definition and Preparation

e Summarize the semantic structure of academic papers, in-
cluding: Title, Author, Abstract, Introduction, Background,
Related Work, Model, Implementation, Evaluation, Discus-
sion, Conclusion, and Reference. The semantic structure can
be selected based on different disciplines.

o Construct a list of sentence patterns and keywords for each
semantic structure, inspired by SciGen!, a program that gen-
erates random academic papers. These sentence patterns,
derived from real academic papers, contain replaceable key-
words with specific examples provided in Appendix A.

2) Content Generation and Integration

o Create context-free grammar rules for each semantic struc-
ture to arrange sentence patterns and add LaTeX syntax,
thereby forming LaTeX files. This process generates a text-
only framework of the academic paper, including titles, au-
thors, text, lists, footnotes, citations, and captions.

e Select a variety of significantly different LaTeX template files
to facilitate the subsequent generation of academic papers
with diverse layouts. Specific LaTeX template files used are
shown in Appendix B

o Extract figures and tables from papers on arXiv, and for each
LaTeX file, randomly insert several figures and tables. Also,

randomly select several formulas from the im2latex_formulas[8]

dataset and insert them into each LaTeX file.
3) Component Information Extraction

o After completing the above steps, the generated LaTeX files
can produce simulated papers. These papers have text con-
tent that conforms to writing conventions, visual content

Uhttps://pdos.csail. mit.edu/archive/scigen/

sourced from real papers, and diverse layouts. On this basis,
adding different background colors to each component in the
LaTeX file can result in color-annotated document images.

e For the color-annotated document images, use algorithms
from the OpenCV library to extract the coordinate of each
component. The specific steps include: Convert a document
image into several binary images based on the predefined
colors of each component. Use closing and opening opera-
tions to remove noise from the binary images. Use contour
extraction algorithms to obtain the corner points of binary
images, and save the category and coordinate information
in a JSON file for object detection models. Then, use contour
filling algorithms to color the contours based on compo-
nent categories, producing segmentation mask images for
semantic segmentation models.

3.3 Multimodal Document Transformer (MDT)

Document layout analysis is a fundamental task in the document
intelligence domain. To facilitate the use of its results in subsequent
tasks, we adopt an object detection-based layout analysis model.
Since the bounding boxes produced by this kind of model make con-
tent extraction straightforward. Our proposed MDT uses DiT[18]
as the backbone model to extract visual features of document im-
ages. These visual features are then fed into the Cascade-RCNN([5]
object detection model. In Cascade-RCNN, the visual features pass
through RPN (Region Proposal Network)[27], RoIAlign (Region of
Interest Align)[15], and convolutional networks to obtain visual
features within the predicted bounding boxes. These features are
then concatenated with page position features and text features
to form the multimodal features of the bounding boxes. Finally,
the coordinates and categories of the bounding boxes are obtained


https://pdos.csail.mit.edu/archive/scigen/

Fine-Grained, Accurate Data Generation and Multimodal Layout Analysis for Academic Papers

JCDL 24, December 16-20, 2024, Hong Kong, China

Class FCN ——— Catel

RPN ROIAlign + Cascade Conv |——————»]

FVisuaI + FPage Box FCN ——» Bbox1

Class FCN ——» Cate2

ROIlAlign + Cascade Conv | ————|

Dit Feature

ROIAlign + Cascade Conv (]

Dit Encoder + FPN

I e e o s = | =

AEE.
Flatten DDDD Split
I [

Fyisual + FPage Box FCN —— Bbox2
OCR
Scibert
\ Class FCN |——» Cate3
Fyisual + FPage + Froxt Box FCN —— Bbox3

FPage

L Resize

Figure 3: The architecture of MDT.

through linear layers, as illustrated in Figure 3. The implementation
details of text features and page position features are provided in
Sections 3.3.1 and 3.3.2, respectively.

3.3.1 Correctly Ordered Text Feature. For fine-grained academic
paper layout analysis, textual components can be categorized into
Title, Author, Text, List, Caption, Formula, Footnote, Citations, etc.
These components are difficult to distinguish using visual features
alone. Models like LayoutLMv3 use OCR to extract text from the
entire document image during pre-training. However, this approach
often suffers from incorrect text order[12], reducing the effective-
ness of pre-training.

Therefore, we do not construct textual modality pre-training
tasks. Instead, after obtaining visual features through DiT, we input
these features into an object detection model to get predicted bound-
ing boxes, and then use OCR to extract text within these boxes to
obtain corresponding text features. The motivation is that, regard-
less of how complex the layout of an academic paper is, OCR tools
can accurately recognize text within individual bounding boxes
without encountering text order issues, as long as the coordinates
of bounding boxes are accurately predicted. These text features are
concatenated with the visual features of the bounding boxes and
fed into a linear classification head to get the final categories and
coordinates of the bounding boxes. To be more specific, we use the
SciBERT model[4], pre-trained on a large multi-domain scientific
publication corpus, as the text encoder to extract text features. Its
parameters are frozen during training. Since more accurate bound-
ing boxes contain more meaningful text, we employ Cascade-RCNN
as the object detection model. Cascade-RCNN enhances detection

accuracy by cascading multiple detectors. We do not extract text
features from the initial output bounding box to ensure higher
quality text features.

3.3.2  Page Position Feature. In addition to visual and text features,
many works use spatial information of a single document image
to aid layout analysis. However, for multi-page academic papers,
the position of a page within the entire document, in addition to its
spatial position within a single page, is also a valuable feature. The
reason is that academic papers, unlike books and other multi-page
documents, typically consist of a few to several dozen pages, and
certain components usually appear on specific pages. For instance,
in fine-grained layout analysis task, Footnote and Citation are visu-
ally and textually similar, but Citation typically appears only on the
last few pages. Similarly, Author mostly appears on the first page.

Therefore, we utilize the page position as a unique feature for
academic paper layout analysis. Since the length of academic pa-
pers varies, the page position feature should reflect whether the
document image belongs to the beginning, middle, or end of the pa-
per, rather than using an absolute page number. The page position
feature is encoded as:

page — 1 (1)

Fpage = total_page — 1

where page is the current page number and total_page is the total
number of pages in the paper. The resulting interval is [0,1], which
effectively models the position of the current page within the paper.
We concatenate this page position feature with other features and
input them into a linear layer to obtain the final bounding box
coordinates and categories.
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4 Experiments

4.1 Implementation Details

MDT is implemented with a backbone composed of DiT-B encoder
and FPN (Feature pyramid network)[20]. DiT-B encoder consists
of 12 layers of transformers, each with 12 attention heads and a
hidden dimension of 768. FPN extracts multi-scale visual features
from outputs of layers 3, 5, 7, and 11. Visual features are then in-
put into Cascade-RCNN. RPN within Cascade-RCNN generates
2000 candidate regions, which are subsequently mapped to the en-
tire image using RoIAlign to produce 7x7x256-dimensional region
features. These features are further processed through 1x1 convo-
lutions to obtain 1024-dimensional region visual features. For each
candidate region, based on the coordinates proposed by the RPN,
OCR is used to extract text within the specified coordinates. The
extracted text is then input into SciBERT to obtain 768-dimensional
text features. Additionally, 1-dimensional page position features
are derived based on the page number of document images.

As a three-stage object detection model, Cascade-RCNN incre-
mentally raises the IoU threshold at each stage. Initially, the quality
of candidate regions proposed by the RPN is low, but with each stage,
the detected bounding boxes progressively approach the ground
truth. Plus, higher-quality bounding boxes contain more meaning-
ful text. However, page position features remain unaffected by the
quality of bounding boxes. Therefore, the first and second stages
of Cascade-RCNN concatenate the 1024-dimensional region visual
features with the 1-dimensional page position feature, forming

1025-dimensional multimodal features. In contrast, the third stage
concatenates the 1024-dimensional region visual features with both
the 1-dimensional page position feature and the 768-dimensional
text features, resulting in 1793-dimensional multimodal features.
Finally, these multimodal features are input into linear layers for
the final classification and localization of the bounding boxes.

To facilitate the comparison of experimental results, all models
follow the training settings of DiT: set the batch size to 16, the
learning rate to 4e-4, and train 60,000 iterations.

4.2 Datasets

4.2.1 General Coarse-Grained Dataset. Despite MDT being de-
signed for fine-grained academic paper layout analysis, we first
test its performance on a general coarse-grained dataset. We select
PubLayNet for model training and testing because it is the most
commonly used dataset in the field of document layout analysis.
Additionally, the filenames of document images in this dataset in-
clude page number information required by the MDT model, such
as "PMC449870_00006.jpg" indicates that it is the 6th page of the
document. The training set of this dataset contains 335,703 docu-
ment images, while the test set contains 11,405 document images.
We train and test both MDT and its base model, DiT, on PubLayNet
to demonstrate the superiority of MDT.

4.2.2  Generated Fine-Grained Dataset. To validate the effective-
ness of our method, we conduct an experiment with a specific
fine-grained layout analysis target: recognizing ten categories of
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Table 1: Test results on PubLayNet. All models are trained
on PubLayNet.

Component DiT MDT-T MDT-P MDT
Title 0.893 0.906 0.906 0.906
Figure 0972  0.972 0.972  0.972
Table 0.978 0.978 0.979 0.980
List 0.960 0.958 0.958 0.960
Text 0.944 0.946 0.946  0.946

Overall 0.945 0.952 0.952 0.953

Table 2: Test results on DLAgenData. All models are trained
on DLAgenData.

Component DiT MDT-T MDT-P MDT

Title 0.9121 0.9348  0.9321 0.9344
Figure 0.9823  0.9838 0.9851  0.9847
Table 0.9474  0.9504 0.9539  0.9556
List 0.9686  0.9842 0.9847  0.9838
Text 09611 09704 0.9713 0.9712
Author 0.9771  0.9962 0.9969  0.9966
Caption 0.9547  0.9742 0.9753  0.9755
Footnote 0.9263  0.9673 0.9679  0.9659
Citation 0.9208 0.9274 0.9296  0.9326

Formula 0.7878
Overall 0.9447 0.9502 0.9508

0.8134 0.8119  0.8086

0.9509

document components, including Title, Text, Figure, Table, List, Au-
thor, Caption, Formula, Footnote, and Citation. This target not only
meets the requirements of most subsequent academic paper un-
derstanding tasks but also fully encompasses the components in
PubLayNet, facilitating direct comparison. After determining the
layout analysis target, we use DLAgen to generate the correspond-
ing dataset, named DLAgenData.

The number of visual content sourced from real academic papers
used in the dataset generation is: 66,836 figures, 13,355 tables, and
69,520 formulas. Utilizing different LaTeX template files for the same
content significantly diversified the dataset, thereby enhancing the
model’s generalization ability, as shown in Figure 4. Samples of
DLAgenData are illustrated in Figure 5, where the segmentation
mask images serve as training data for semantic segmentation
models, while the JSON format component coordinates are used
for training the object detection models like MDT.

DLAgenData comprises 2,000 academic papers and 13,688 docu-
ment images. The dataset was divided into training and test sets in
a 4:1 ratio. Specifically, 1,600 papers with a total of 10,876 document
images are used as the training set, while the remaining 400 papers
with 2,812 document images are used as the test set. As in Section
4.2.1, we also train and test both MDT and DiT on DLAgenData to
demonstrate the superiority of MDT.

4.2.3 Manually Annotated Fine-Grained Test Set. To demonstrate
the consistency between academic papers generated by DLAgen and
real academic papers, as well as the effectiveness of MDT trained
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on DLAgenData for fine-grained layout analysis on real academic
papers, we randomly selected 500 document images from 100 ACL
papers for fine-grained manual annotation as a test set. We test
MDT and other layout analysis models, including the current SOTA
model, on this test set.

4.3 Coarse-Grained Layout Analysis Results

Using DiT-Cascade-RCNN as a baseline, we construct three addi-
tional models by incorporating different features: MDT-P (with
page position feature), MDT-T (with text feature), and MDT (with
both features). These four models are trained and tested on Pub-
LayNet. The test results include mAP scores for ten categories of
components and the average mAP for all categories. The mAP is
calculated as the average of AP values at IoU thresholds ranging
from 0.5 to 0.95 in increments of 0.05. The results are shown in
Table 1, where the highest mAP values for each component are
highlighted. All three MDT models achieve higher mAP scores than
DiT, even though the coarse-grained layout analysis task did not
fully utilize the advantages of page position and text features.

4.4 Fine-Grained Layout Analysis Results

4.4.1 Results on the Generated Dataset. The four models used in
Section 4.3 are trained and tested on DLAgenData. The experi-
mental results are shown in Table 2. Overall, the baseline model
performs well, achieving an average mAP of 0.9447. This indicates
that with finely annotated datasets, the model is capable of per-
forming fine-grained academic paper layout analysis, underscoring
the necessity of DLAgen. Moreover, adding either page position
features or text features improves the model’s performance. MDT,
which incorporates both features, achieved the highest average
mAP of 0.9509. Furthermore, for each component category, the
mAP of the three enhanced models were higher than those of the
baseline model.

4.4.2 Results on the Manually Annotated Test Set. We test DiT
trained on PubLayNet, as well as DiT, MDT-T, MDT-P, MDT, Lay-
outLMv3, and VGT (SOTA) trained on DLAgenData on the manually
annotated dataset. The test results are shown in Table 3.

1) The Effectiveness of DLAgenData Comparing DiT (DLAgen-
Data) and DiT (PubLayNet) intuitively reflects the advantage of
training models on a fine-grained dataset, as DiT (DLAgenData)
can identify five more components. DLAgenData further refines
Text into Text, Author, Caption, Footnote, Citation, and also adds
the Formula category. Although one might intuitively expect finer-
grained layout analysis to be more difficult, experimental results
show that DiT (DLAgenData)’s mAP is 0.0462 higher than that of
DiT (PubLayNet). Since they use the same model, the difference in
performance is not due to the model’s capability.

Possible reasons include: Firstly, PubLayNet is composed solely
of academic papers from the biomedical field, which lacks diver-
sity in document styles, leading to reduced performance when the
trained model is applied to ACL papers. Secondly, PubLayNet’s
coarse-grained classification lumps together Text, Author, Caption,
Footnote, and Citation into a single Text category, despite signifi-
cant differences among these categories. Recognizing such diverse
categories as a single entity increases the difficulty. By visualizing
the experimental results, it can be observed that most of the errors
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Table 3: Test results on the manually annotated test set. The dataset used for training the model is enclosed in parentheses.

Component DiT DiT LayoutLMv3 VGT MDT-T MDT-P MDT
(PubLayNet) (DLAgenData) (DLAgenData) (DLAgenData) (DLAgenData) (DLAgenData) (DLAgenData)
Title 0.7366 0.7183 0.5628 0.6797 0.715 0.7206 0.741
Figure 0.8483 0.9057 0.8817 0.9143 0.9164 0.9095 0.9249
Table 0.7582 0.9448 0.9220 0.9461 0.9392 0.9475 0.9447
List 0.8404 0.7164 0.9024 0.9314 0.8594 0.9252 0.9172
Text 0.7782 0.9464 0.9497 0.9406 0.9508 0.9558 0.9604
Author / 0.9374 0.8063 0.9031 0.9138 0.9469 0.9458
Caption / 0.831 0.8184 0.8273 0.8413 0.8308 0.839
Footnote / 0.6859 0.7312 0.7537 0.7999 0.7731 0.8101
Citation / 0.9812 0.9277 0.9927 0.9697 0.9924 0.9811
Formula / 0.7181 0.7312 0.6241 0.7439 0.7445 0.7967
Overall 0.7923 0.8385 0.8178 0.8513 0.8649 0.8746 0.8861

(@

(b)

Figure 6: Comparison of (a) DiT trained on PubLayNet and (b) MDT trained on DLAgenData for layout analysis on real papers.

in recognizing the coarse-grained Text by DiT (PubLayNet) stem
from the fine-grained categories of Author, Footnote, and Citation.

Moreover, the test results of MDT (DLAgenData) on the manually

annotated test set were only 0.0648 (0.9509—0.8861) lower than
its performance on DLAgenData, confirming the high consistency
between DLAgen-generated papers and real papers.
2) The Effectiveness of MDT Comparing all models trained on
DLAgenData, MDT achieved the highest mAP value of 0.8861. Even
MDT-T and MDT-P outperformed the current SOTA, demonstrating
the effectiveness of page position and text features for fine-grained
academic paper layout analysis.

Comparing MDT-T and MDT-P in terms of mAP values across
different components, the difference is less than 0.01 for Title, Text,
Image, Table, and Formula. For Citation, Author, and List, MDT-P
performs noticeably better than MDT-T. This is because Citation
and Author are strongly pagination-dependent: Author typically
appears on the first page of a document, while Citation generally
appears later. Improvements in Citation recognition consequently
enhance the accuracy of List recognition, as List is often confused
with Citation. For Caption and Footnote, MDT-T performs better
than MDT-P, since long Caption may be visually similar to Text,
even though they are distinct in textual content, often starting with

"Figure" or "Table." Similarly, Footnote visually resembles Text, List,
and Citation, but they often begin with numbers or symbols, making
them distinguishable in textual content.
3) Visualization Analysis It’s worth noting that in many cases,
Title, Caption, and Footnote consist of only a few words or even a
single word, occupying a very small area in document images. As
a result, even when the model’s predicted bounding boxes appear
visually accurate, their IoU with manually annotated bounding
boxes often does not reach the maximum threshold of 0.95 used
to compute mAP. This discrepancy explains why MDT’s mAP for
these components is lower than those obtained on the generated
dataset. In contrast, Figure, Table, and Citation, which typically
occupy larger areas in document images, show minimal variation
in mAP compared to results on the generated dataset. In fact, the
mAP of Citation even exceed those on the generated dataset.
Therefore, to provide a more intuitive analysis of MDT’s perfor-
mance on real papers and the impact of adding page position and
text features, the results of MDT trained on DLAgenData and DiT
trained on PubLayNet are visualized in Figure 6, and results of MDT
and DiT both trained onDLAgenData are visualized in Figure 7.
Observing Figure 6(a), a Table is incorrectly identified as a Figure,
which is a confusion that often occurs in the application of DiT.
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Figure 7: Comparison of layout analysis results between DiT
and MDT: (a) and (c) show the results of DiT trained on DLA-
genData, while (b) and (d) show the results of MDT-T and
MDT-P trained on DLAgenData, respectively.

However, thanks to the diversity of document layouts in DLAgen-
Data and the utilization of textual information within Figure and
Table, Figure 6(b) correctly distinguishes between a Figure and a
Table. Comparing Figure 7(a) and (b), it’s evident that the use of text
features aids in distinguishing long Caption from Text. Similarly,
from the comparison in Figure 7(c) and (d), the use of page position
features contributes to distinguishing Footnote, Citations, and List.

5 Conclusion

We present DLAgen, a method for accurately generating fine-grained
annotated academic paper datasets for training layout analysis mod-
els, capable of producing academic papers of any scale, layout, and
annotation type. This allows for the conversion of manual data an-
notation into automated annotation. Additionally, we propose MDT,
a multimodal academic paper layout analysis model that utilizes
visual, page position, and correctly ordered text features to cater
to fine-grained academic paper layout analysis tasks. Using MDT
trained on datasets generated by DLAgen, we achieve superior per-
formance compared to SOTA models in real academic paper layout
analysis. This confirms the consistency between DLAgen-generated
papers and real papers, and demonstrates the effectiveness of MDT
for fine-grained academic paper layout analysis.

Appendix

A Sentence Patterns Used for Generating
DLAgenData

In Section 3.2, we introduce the construction of sentence patterns
and keywords for different semantic structures, and used context-
free grammar to generate the textual content. Here, we take the
semantic structure "Abstract” as an example to illustrate the content
generation method. It consists of three parts: ABSTRACT_INTRO
introduces the research domain, ABSTRACT PROBLEM describes
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the existing issues, and ABSTRACT_SOLUTION presents the solu-
tions proposed by the paper. For instance, the sentence patterns for
ABSTRACT INTRO include but are not limited to:

e INNO_AD]J INNO_NOUN have garnered LIT_GREAT inter-
est from PEOPLE in the last several years XXX

o Inrecent years, much research has been devoted to the ACT;
LIT_REVERSAL, few have VERBED the ACT XXX

e PEOPLE agree that INNO_AD] INNO_NOUN are an inter-
esting new topic in the field of FIELD XXX

e The ACT has VERBED THING_MOD, and current trends
suggest that the ACT will soon emerge XXX

e The FIELD APPROACH to THING_MOD is defined not only
by the ACT, but also by the AD] need for THING_MOD XXX

e Unified INNO_ADJ INNO_NOUN have led to many AD]J
advances, including THING_MOD and THING_MOD XXX

The uppercase parts are keywords. For example, in the first
sentence pattern, INNO_AD] represents adjectives describing inno-
vative technologies, including "autonomous ,' "robust," "scalable,’
"self-learning," "stochastic," etc.; INNO_NOUN represents nouns

"o

related to innovative technologies, such as "algorithms," "configura-
tions," "methodologies,’ "modalities,’ "symmetries," etc.; LIT GREAT
represents evaluative adjectives like "great," "limited," "minimal,’
"profound,’ "tremendous," etc.; PEOPLE refers to individuals, in-
cluding "analysts," "experts,’ "researchers," "scholars," "statisticians,'
etc.; XXX represents the sentence ending, which could be a period
or a citation followed by a period. A complete sentence can be:
"Autonomous vehicles have garnered considerable interest from

academics in the last several years."

B LaTeX Template Files Used for Generating
DLAgenData

In Section 3.2, we introduce the use of various LaTeX template files

to increase the layout diversity of the generated academic papers.

The LaTeX template files we use include, but are not limited to:

Single Column Double Column

article.cls IEEEtran.cls
IEEEphot.cls IEEEims.cls
decpaper.cls IEEEoj.cls
stvrauth.cls IEEEcsmag.cls
ouparticle.cls IEEEjmw.cls
elsarticle.cls elsart.cls

entcs.cls sig-alternate.cls
svjour3.cls CUP-JNL-PPS.cls
amsart.cls acmart.cls

C More document images in DLAgenData

We present more document images in DLAgenData in Figure 8.

D Incorrect Annotations in DocBank

In Section 2.1, we point out that DocBank contains many inac-
curate annotations, some of which are shown in Figure 9. These
inaccuracies include: incorrect component category annotations,
incorrect component boundary annotations, incorrect splitting of
whole components, and incorrect merging of different components.
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Figure 9: Incorrect annotations in DocBank.
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