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A B S T R A C T

Pre-evaluating scientific paper quality aids in alleviating peer review pressure and fostering scientific ad-
vancement. Although prior studies have identified numerous quality-related features, their effectiveness and
representativeness of paper content remain to be comprehensively investigated. Addressing this issue, we
propose a content-based interpretable method for pre-evaluating the quality of scientific papers. Firstly, we
define quality attributes of computer science (CS) papers as integrity, clarity, novelty, and significance, based on
peer review criteria from 11 top-tier CS conferences. We formulate the problem as two classification tasks:
Accepted/Disputed/Rejected (ADR) and Accepted/Rejected (AR). Subsequently, we construct fine-grained features
from metadata and knowledge entity networks, including text structure, readability, references, citations,
semantic novelty, and network structure. We empirically evaluate our method using the ICLR paper dataset,
achieving optimal performance with the Random Forest model, yielding F1 scores of 0.715 and 0.762 for
the two tasks, respectively. Through feature analysis and case studies employing SHAP interpretable methods,
we demonstrate that the proposed features enhance the performance of machine learning models in scientific
paper quality evaluation, offering interpretable evidence for model decisions.
. Introduction

High-quality research is the engine of scientific and technological
rogress. Many countries have elevated the identification and man-
gement of high-quality research to the national level. In addition
o primary funding, many countries conduct large-scale expert assess-
ents of the quality of research and researchers, such as the Research
xcellence Framework (REF) in the United Kingdom (Wilsdon, 2016),
he Performance-Based Research Fund (PBRF) in New Zealand (Buckle
nd Creedy, 2019) and Italy (Franceschini and Maisano, 2017), and
he Excellence Program in Australia (Hinze et al., 2019). Assessing the
uality of papers is often a subjective and time-consuming task (Lin
t al., 2023). Peer review is a critical way to evaluate the quality
f papers, and it is considered the gatekeeper of publications (Marsh
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and Bazeley, 1999). However, peer review inevitably has limitations.
Differences among reviewing experts in professional knowledge, re-
viewing environments and emotions, and conflicts of interest can affect
the consistency of review results (Lin et al., 2023). Worse still, the
proliferation of submissions has become an enormous burden on the
effective operation of peer review. The process not only consumes the
authors’ academic time but also fails to adequately reward reviewers
for their efforts (Huisman and Smits, 2017).

Nowadays, many researchers have begun to explore and design
various approaches to identify and measure the quality of research.
The quality of research is usually reflected in different aspects, such
as innovation (Uzzi et al., 2013; Wang et al., 2022), novelty (Wu
et al., 2019; Xu et al., 2021; Luo et al., 2022; Hou et al., 2022),
impact (Abrishami and Aliakbary, 2019; Hu et al., 2020; Xu et al.,
vailable online 9 July 2024
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2022), and readability (Vincent-Lamarre and Larivière, 2021; Ante,
2022). The combination of these different attributes constitutes the
overall quality of a paper. Some scholars have focused on open re-
view in pursuing a more comprehensive and quantifiable standard
for evaluating research quality. Using the corresponding review scores
of publicly available papers as a quality criterion achieves a more
comprehensive and fairer assessment of the overall quality of a pa-
per (Kang et al., 2018). Researchers are able to analyze the features
of papers receiving high review scores to assess the quality of scientific
papers. With the advancement of deep learning and natural language
processing technologies, researchers have applied them to scientific
paper quality assessment. They have used neural networks or pre-
trained language models to represent the text of a paper with accurate
semantic information (Yang et al., 2018; Wenniger et al., 2020; Xue
et al., 2023).

However, existing research on assessing the quality of scientific
papers suffers from two main shortcomings. Firstly, there is a lack of
interpretability. Evaluating the quality of scientific papers is a high-
stakes task, and the predictions made by models must be accompanied
by corresponding evidence. On the other hand, when constructing
quality-related features, the focus should be on the content of the
paper (Sun et al., 2022), evaluating the value of the knowledge con-
tributed by the paper, rather than merely relying on external metadata.
Secondly, the data must be accessible beforehand. Assessing the quality
of scientific papers is also a highly time-sensitive task. Data such as
citation counts (Thelwall et al., 2023b) and peer review texts (Ghosal
et al., 2019) are not available during the peer review stage, and models
built using these data are severely limited in value. To achieve this goal,
we formulate the following research questions (RQs):

• RQ1: What are the criteria and attributes for the quality evalua-
tion of scientific papers?

• RQ2: What can be used to realistically represent a scientific paper
and quantify the predefined criteria and attributes for quality
evaluation?

• RQ3: What approaches are effective for evaluating the quality of
scientific papers based on their content?

For RQ1, we compiled review guidelines from 11 prominent con-
erences in computer science, distilling four core attributes – integrity,
larity, novelty, and significance — to gauge paper quality.

For RQ2, scientific papers encapsulate a rich tapestry of valuable
nowledge, offering a nuanced reflection of essential content (Zhang
t al., 2020). Existing quality metrics, primarily reliant on reference
ombinations, often neglect this granular knowledge, so lack semantic
epth. Methods focusing on topic and term extraction from titles and
bstracts overlook the semantic interplay between paper content and
eferenced knowledge. In contrast, extracting knowledge entities from
he full text and constructing co-occurrence networks prove advanta-
eous, revealing characteristics in knowledge generation, utilization,
nd evolution (Liang et al., 2021). We propose a content representa-
ion using a three-level network for each paper – at the paper level,
elated field level, and paper-related field alignment level – enabling

comprehensive capture of diverse knowledge domains within the
rticle.

For RQ3, assessing the quality of scientific papers based on content
equires methods that are comprehensive and interpretable. We fully
onsider the metadata of scientific papers and the knowledge entity
etwork, constructing features supported by corresponding evidence
or integrity, clarity, novelty, and significance of quality. These features
ncompass various aspects such as text structure, references, citations,
eadability, network structure characteristics, semantic novelty, and
ore. In feature analysis, we utilize the SHAP interpretable machine

earning method to demonstrate how different features influence the
odel’s decisions.

To validate the effectiveness of the proposed method, we con-
2

ucted an empirical evaluation based on papers from the International c
Conference on Learning Representations (ICLR) in 2023. We defined
the assessment of scientific paper quality as a binary classification
task: Accepted/Disputed/Rejected (ADR) and Accepted/Rejected (AR). We
ompared several machine learning models and pre-trained language
odels. The results indicate that the Random Forest model performed

xceptionally well on both classification tasks, with F1 scores of 0.715
nd 0.762, respectively. Additionally, we conducted feature analysis
nd case studies, demonstrating that integrity, clarity, novelty, and
ignificance are all crucial features affecting paper quality. We also
ummarized the fine-grained feature distributions of papers of different
ualities.

The rest of the paper is organized as follows: In Section 2, we review
esearch evaluating the scientific paper’s quality. Section 3 details the
ethodology and research design. In Section 4, we perform an empiri-

al analysis. Section 5 further discusses the results and implications of
he study. Section 6 summarizes this paper and outlines future work.
ur datasets, code for reproducing the methods, and additional experi-
ental results can be accessed on GitHub with the following link: https:

/github.com/haihua0913/QualityEval4Papers. The abbreviations and
cronyms used in this article are listed in Table A.1.

. Related work

This section presents an overview of the current literature on the
dentification of key features and the assessment of quality in high-
uality scientific papers.

.1. The identification of the features of high-quality scientific papers

For high-quality research, numerous scholars have focused on mea-
uring attributes, such as novelty, innovation, impact, and readability,
n the quality of papers. These refinements help us understand the con-
otations of quality in scientific papers and explore more interpretable
nd pre-accessible features.

In novelty evaluation, the novelty of scientific papers can be seen
s an atypical reorganization of different knowledge. Uzzi et al. (2013)
nalyzed 17.9 million papers by examining the combinations of refer-
nces in the reference lists and their co-citation frequencies and found
hat the most influential sciences tended to add novelty to the work
f their predecessors. Amplayo et al. (2018) designed both a macro-
raph consisting of authors and papers, and a micrograph composed of
eywords, topics, and words to detect the novelty of papers, and found
hat the keyword-topic-word novelty model is more suitable for novelty
etection. Luo et al. (2022) regarded the papers as question-method
erm pairs and used the BERT model to compute semantic similarity
etween the term pairs to characterize the novelty of the papers. Hou
t al. (2022) considered academic papers as different combinations of
esearch questions, research methods, and research results and utilized
he Sentence-BERT model to compute the novelty of the knowledge
inks constituted by the different combinations.

In innovation evaluation, innovations can be classified into two
ain categories: incremental consolidation and disruptive

reakthroughs (Li and Chen, 2022). By counting the citation rela-
ionships among focal literature, references to focal literature, and
itations to focal literature, Wu et al. (2019) proposed the D index
or measuring breakthrough innovation research. Wang et al. (2023)
ncorporated knowledge entities into calculating the D index, which
eveals breakthrough innovations from the perspective of fine-grained
nowledge content. In patented technology, Chen et al. (2021) intro-
uced a novel perspective by redefining instability and consolidation as
wo dimensions of technology. They proposed that highly innovative
echnology can be characterized as dual technology, emphasizing its
bility to consolidate existing technologies and disrupt and desta-
ilize other technologies. From a micro perspective, the degree of
esearch innovation can be reflected by the degree of innovation of

ore knowledge elements. For instance, Wang et al. (2022) utilized

https://github.com/haihua0913/QualityEval4Papers
https://github.com/haihua0913/QualityEval4Papers
https://github.com/haihua0913/QualityEval4Papers
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a combination of biterm topic modeling (BTM) and cloud modeling
methods to calculate the degree of innovation of knowledge elements
in the method category.

Citation count can be used to assess the potential impact of a
paper. Abrishami and Aliakbary (2019) used artificial neural networks
to predict long-term citations based on the early citation counts. Zhao
and Feng (2022) constructed citation networks to predict citation count
from the perspective of information cascade. Huang et al. (2022),
conversely, combined the structural functions of papers with citation
count prediction. On the other hand, the impact is also reflected in
changes in the structure of knowledge networks. The emergence of
novel topics changes the topology of the network structure (Zhang
et al., 2021; Min et al., 2021). Xu et al. (2022) monitored the changes
in the structural entropy of the knowledge network of scientific topics
to find the tipping point in genetically engineered vaccines.

2.2. The methods of evaluating quality of scientific papers

2.2.1. Evaluation methods based on constructed features
To construct effective features to quantify and predict decisions in

peer review, Kang et al. (2018) proposed two natural language pro-
cessing (NLP) tasks: paper acceptance classification and review aspect
prediction. Paper acceptance classification is a binary classification task
used to predict whether a manuscript will be accepted to a conference.
Review aspect prediction is a multiclass regression task used to predict
the scores of different aspects of a paper to determine the quality
of the manuscript. In the first task, Kang et al. (2018) designed two
types of features: coarse and lexical. The former includes whether
the manuscript contains appendices, title length, number of authors,
and references. The latter includes features such as a bag of words
extracted from the abstract and TF-IDF weights. In the second task,
they performed a regression analysis of eight aspects of the manuscript
with the help of expert review texts in OpenReview. Given that some
conferences publicly release review comments, which can provide ad-
ditional features for predictive models, many scholars have conducted
sentiment analyses of review comments to explore whether positive
reviewer emotions can reflect the quality score of a paper (Wang
and Wan, 2018; Ghosal et al., 2019; Ribeiro et al., 2021). Although
sentiment analysis of review comments achieved excellent results in the
two NLP tasks mentioned above, this post hoc information is ineffective
in relieving the pressure on reviewers.

On the other hand, bibliometrics and other indicators can help
distinguish the quality of papers, including citation counts, authors’ av-
erage citation rates, journal impact factors, and so on Thelwall (2022),
Thelwall et al. (2023b). High-quality research often receives more cita-
tions, and Kousha and Thelwall (2023) systematically reviewed factors
that affect research quality or citations, including textual structural
properties, journal properties, team size properties, and subject/field
properties. Considering the potential bias of relying on citation data
alone, Lin and Qilin (2020) argued that sentiment polarity analysis
combined with citations can help to differentiate paper quality. How-
ever, Xu et al. (2023) found that while high-quality papers received
more positive citations, the frequency of negative citations was also
significantly higher than general papers. They attributed this phe-
nomenon to the fact that high-quality articles receive more attention,
incentivizing more papers to improve their deficiencies. Similarly, the
above indicators are still ex-post with a time lag and must be accu-
mulated over time. By considering the citation text in the body of
the paper, Basuki and Tsuchiya (2022) argued that the distribution of
citation function features reflects the paper’s position in the relevant
3

literature and is helpful in evaluating the paper’s quality.
2.2.2. Evaluation methods based on deep learning
In contrast to the manually constructed features mentioned above,

deep learning-based models automatically extract semantic features
from papers. Yang et al. (2018) proposed a modular hierarchical convo-
lutional neural network to achieve paper rating by the deep represen-
tation of the full-text content. Since training recurrent neural networks
on long texts such as papers can lose important information about
text structure, Wenniger et al. (2020) combined hierarchical attention
networks with structural labels to improve paper quality prediction
tasks. However, many papers do not support open access and the
full paper can contain more redundant and noisy information. Xue
et al. (2023) proposed the DGC-BERT model, which uses a dual-view
convolutional network to enhance the in-depth representation of the
paper’s title and abstract.

In the field of deep learning for text generation, generating re-
view comments for papers is a more direct way to evaluate their
quality. Wang et al. (2020) generated review comments for target
papers by constructing knowledge graphs for the target papers and
their related fields. However, their experimental results have not been
widely validated, and only 50 papers were manually evaluated for
the constructive and effective review comments generated. Yuan et al.
(2022) constructed the ASAP-Review dataset for generating review
comments on different aspects of papers and trained the BART model
to generate review comments. Extensive experimental results showed
that compared with human-written reviews, the reviews generated
by their model could summarize the core ideas of the paper more
comprehensively. However, there still needs to be improvement in the
constructive and accurate nature of the feedback.

In summary, we highlight the following gaps: (1) Clarity in quality
standards. There is a need for clearly defined and subdivided quality
standards for evaluating scientific papers. While peer review decisions
or scores offer comprehensive assessments, specific quality properties,
such as innovation, novelty, impact, and readability, need explicit
definition and quantification. This finer granularity can enhance the
precision of scientific paper quality assessment based on overall peer
review results. (2) Content-focused predictive features. Features for
predicting scientific paper quality should center on the content dimen-
sion. Relying solely on metadata or bibliometric information neglects
the substance of scientific content, potentially introducing bias or
randomness and leading to unfair evaluations. (3) Interpretability and
pre-accessibility of features. Features used for predicting paper quality
should be interpretable and accessible beforehand. Peer review is a
high-stakes scenario; only interpretable features can guide review ex-
perts. Since peer review is a pre-evaluation process, post-information
like citation counts, journal impact factors, and sentiment in review
comments cannot be utilized.

3. Methodology

This section first gives a formal definition of two different tasks
for the quality evaluation of scientific papers. We then introduce the
proposed framework, which is shown in Fig. 1. The framework consists
of three main steps: (1) establishing criteria for scientific paper qual-
ity assessment, (2) constructing feature representations for machine
learning models, and (3) machine learning model development and
evaluation, which will be described in Sections 3.2, 3.3, and 3.4,
respectively.

3.1. Problem definition

Evaluating the quality of scientific papers can be defined as a
classification task. For conference papers, the determination made by
the area chair serves as the benchmark for classifying paper quality.
Area chairs, who are recognized experts in their fields, utilize anony-
mous review comments and their extensive expertise to categorize a
paper as accepted or rejected. Acceptance signifies a high level of



Journal of King Saud University - Computer and Information Sciences 36 (2024) 102119Z. Wang et al.
Fig. 1. The overall architecture for evaluating the quality of scientific papers.
quality, while rejection implies a deficiency in this aspect. However,
we have observed instances of misalignment between review scores and
decision categories. Some papers with high scores face rejection, while
others with low scores get accepted, indicating a divergence in quality
assessment between anonymous reviewers and area chairs, as shown in
Fig. A.1.

Therefore, we bifurcate the task of evaluating paper quality into
two classification tasks: the Accepted/Disputed/Rejected (ADR) task and
the Accepted/Rejected (AR) task. We will assess paper quality for both
classification tasks concurrently in subsequent experiments. The formal
mathematical formulation of the two classification tasks is as follows:

For the ADR task:

𝑦 = 𝑓 (𝑥1, 𝑥2,… , 𝑥𝑛) (1)

where 𝑦 represents the paper category, which can be Accepted, Dis-
puted or Rejected. 𝑥1, 𝑥2,… , 𝑥𝑛 represent the input crude features and
knowledge entity network features. 𝑓 (⋅) represents the classification
model.

For the AR task:

𝑦′ = 𝑔(𝑥1, 𝑥2,… , 𝑥𝑛) (2)

where 𝑦′ represents the paper category, which can be Accepted or
Rejected. 𝑔(⋅) represents another classification model, which may be
different from the one used in the ADR task.

3.2. Establishing criteria for scientific paper quality assessment

To evaluate the quality of scientific papers, it is essential to clar-
ify the definition of quality and its attributes. The peer review pro-
cess, divided into pre-publication and post-publication stages (Spezi
et al., 2018; Checco et al., 2021), plays a pivotal role in this eval-
uation. In the pre-publication stage, papers undergo initial screening
for plagiarism, formatting, scope, and presentation. Reviewers then
assess the papers based on criteria, such as Novelty/Originality, Im-
portance/Significance, Scope/Relevance, and Soundness/Rigor. Auto-
mated review systems also follow a two-stage process (Lin et al.,
2023).
4

Table 1
The statistics on the different criteria mentioned in the review guidelines.

Top conferences Criteria mentioned in the review guidelines

Area1 Area2 Area3 Area4 Area5 Area6 Area7

NeurIPS ✓ ✓ ✓ ✓ ✓ ✓

ICLR ✓ ✓ ✓ ✓ ✓ ✓ ✓

ICML ✓ ✓ ✓ ✓ ✓

ICCV ✓ ✓ ✓ ✓ ✓

CVPR ✓ ✓ ✓ ✓

ACL/NAACL/EMNLP ✓ ✓ ✓ ✓ ✓ ✓ ✓

ECCV ✓ ✓ ✓ ✓

IJCAI ✓ ✓ ✓ ✓ ✓ ✓

AISTATS ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: Area1 refers to ‘‘Related Work/Relationship to Previous
Work’’, Area2 refers to ‘‘Strengths and Weaknesses/Contribution’’,
Area3 refers to ‘‘Innovation/Novelty/Originality’’, Area4 refers to
‘‘Rigor/Rationality/Repeatability/Interpretability/Scalability’’, Area5 refers to
‘‘Readability/Clarity/Organization of Writing’’, Area6 refers to ‘‘Importance/Application
Prospects/Impact/Significance’’, and Area7 refers to ‘‘Ethical Concerns/Ethical Review’’.
The statistical date is as of July 10, 2023.

As the field of computer science is experiencing rapid expansion
and a substantial influx of submissions, there is an increasing demand
for a more efficient peer review process. Consequently, we have placed
our emphasis on articles within the realm of computer science. In this
particular field, conference papers serve as the predominant format
for scholarly works, thus prompting us to examine the quality criteria
delineated in the latest review guidelines of esteemed conferences.
Through manual analysis of criteria and literature review (Yuan et al.,
2022; Kousha and Thelwall, 2023; Shi et al., 2024), we identified
four main criteria for evaluating computer science papers: integrity,
clarity, novelty, and significance (see Tables 1 and 2). In the subsequent
sections, these criteria will be the foundation for our paper quality
evaluation.
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Table 2
The criteria for evaluating the quality of scientific papers.

Evaluation criteria Description

Integrity The proposed methodology, technique, or
justification should be comprehensive, detailed,
precise, reproducible, and take full account of
existing research.

Clarity The quality of language (word spelling, grammar)
are up to standard, and the writing style and
organization of paper’s sections are in line with
academic norms.

Novelty The scientific paper is an innovative way to
advance science by recombining existing
knowledge or proposing new knowledge (including
methods, theories, discoveries, results, etc.) in an
unprecedented way.

Significance The scientific paper changes or complements an
existing body of knowledge and has an impact on
the field of study or social practice.

3.3. Constructing feature representations for machine learning models

3.3.1. Coarse feature and knowledge entity network construction
(1) Coarse feature
When assessing the quality of scientific papers, we can extract

seful metadata from the paper itself to construct coarse features. These
eatures typically include the textual structure, such as charts, formulas,
nd word count; the readability of the abstract text; the citation intent
f the cited content; and the quantity, recency, and citation frequency
f the references in the bibliography. These features can not only be
btained in advance, but also play a crucial role in identifying the
uality of the paper (Kang et al., 2018; Checco et al., 2021; Kousha
nd Thelwall, 2023).

(2) Knowledge entity network construction
Knowledge entities are fundamental elements of scientific papers

Zhang et al., 2020). These entities are categorized into macro entities
e.g., authors, journals, papers), meso entities (e.g., keywords), and
icro entities (e.g., datasets, methods, domain entities) (Ding et al.,
013). We focus on micro-knowledge entities as they are essential
omponents of scientific papers.

In the field of artificial intelligence, we adopt the entity label-
ng scheme introduced by the SciERC dataset (Luan et al., 2018),
ncompassing entity types like Task, Method, Metric, Material, Other-
cientific Term, and Generic. We employ the SciNERTopic model (Ro-
an Jurowetzki, 2022) to extract knowledge entities. This model com-

ined Sentence Transformers and BERTopic and was fine-tuned on
he SciERC dataset, enabling efficient extraction of knowledge entities.
he extracted entities form the basis for constructing knowledge entity
o-occurrence networks, providing a more detailed representation of
ontent than previous approaches relying on references, keywords,
r topics (Liang et al., 2021; Xu et al., 2022). These networks re-
eal specific reference knowledge and association strengths through
o-occurrence relationships.

We design a three-level network of knowledge entity co-occurrence,
omprising the paper, related field, and paper-related field align-
ent levels. Precisely, the paper-level network (𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑝 = (𝐾𝑝, 𝐸𝑝))

onsists of knowledge entities at the paper level (𝐾𝑝) and their co-
ccurrence relationships (𝐸𝑝), with edge weights indicating
o-occurrence frequency. The related field level network (𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑟 =
𝐾𝑟, 𝐸𝑟)) encompasses literature in the related field containing entities
rom the paper (𝐾𝑟) and their co-occurrence relationships (𝐸𝑟), with
dge weights representing co-occurrence frequency. The paper-related
ield alignment level network is defined as 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑎 = (𝐾𝑎, 𝐸𝑎), where
𝑎 is obtained by aligning 𝐾𝑝 and 𝐾𝑟, and 𝐸𝑎 is the union of 𝐸𝑝 and
𝑟. Utilizing these three network levels enables a nuanced assessment
f novelty and significance within knowledge entity networks.
5

s

.3.2. Integrity features construction
We first design integrity features based on the citation intent of

he cited content. By analyzing the distribution of citation intents, we
an gain insights into how scientific papers build upon and improve
pon existing research (Lin and Sui, 2020; Basuki and Tsuchiya, 2022).
pecifically, following the classification in Lauscher et al. (2021), we
ategorize the citation intents in the paper into seven types: back-
round, difference, extends, future work, motivation, similarity, and
ses. Background citations can explain the research problem’s context
nd related work. Difference citations can highlight the study’s innova-
ions and contrast it with prior work. Extends citations can demonstrate
he research’s continuity. Future work citations can indicate the study’s
imitations and improvement directions. Motivation citations can elu-
idate the rationale and justification for the current study. Similarity
itations can supplement the argumentation by referencing analogous
tudies, reflecting the study’s coherence. Uses citations introduce the
ethods, theories, or models adopted in the research.

In addition, the references are also a reflection of the paper’s
ntegrity, including the quantity and recency of the references. These
eatures indicate whether the scientific paper is built upon a com-
rehensive foundation of existing research, whether it keeps up with
he latest research progress, and whether it is at the forefront of the
ield. Furthermore, for conference papers, the presence of appendices
s often an important feature in assessing the paper’s quality (Kousha
nd Thelwall, 2023).

.3.3. Clarity features construction
One way to construct clarity features is to measure the readability

f the scientific paper. Various readability indices, such as the Flesch–
incaid Grade Level, SMOG Index, Coleman-Liau Index, Automated
eadability Index (ARI), Linsear Write Formula, and Gunning Fog

ndex (Kousha and Thelwall, 2023), are commonly used to calculate
he readability of the text. These indices consider factors like sentence
ength, word length, complex words, and syllable counts. There has
een extensive empirical research conducted by many scholars explor-
ng the relationship between readability and the quality of scientific
apers (Ante, 2022; Vincent-Lamarre and Larivière, 2021). While the
indings may vary across different domains, these readability measures
an provide valuable insights into the clarity of the paper’s quality (Lu
t al., 2019). By incorporating these readability features, we can assess
he extent to which the scientific paper is presented in a clear, concise,
nd easy-to-understand manner. This can be an important indicator
f the paper’s overall quality and its potential impact on the target
udience.

Another aspect of constructing clarity features is to consider the
extual structure of the paper, including the presence of charts, for-
ulas, and word count. To effectively convey the research process,
resent the findings, and provide thorough argumentation, authors
eed to include appropriate visual aids, mathematical expressions, and
extual explanations within the paper (Kousha and Thelwall, 2023). The
nclusion of well-designed charts, informative formulas, and a suitable
ord count can reflect the author’s efforts to enhance the clarity and

omprehensibility of the scientific paper. These structural elements can
elp readers better understand the concepts, methods, and conclusions
resented in the work.

.3.4. Novelty features construction
We leverage knowledge entity networks to measure the novelty

f scientific papers. Specifically, we first assign weights to the entity
airs based on their co-occurrence frequency in the paper, giving
igher weights to core knowledge entities and reducing the influence
f redundant information. Next, we calculate the semantic similarity
etween the knowledge entity pairs present in the paper and those
epresenting the domain-level knowledge. This allows us to ultimately
erive a novelty score for the paper. Beyond the numerical novelty
core, the number of new nodes and edges in the paper’s knowledge
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network can also reflect its novelty. The presence of new knowledge
entities and novel connections between them suggests that the paper in-
troduces new concepts or reorganizes existing knowledge in innovative
ways. By analyzing the characteristics of the knowledge entity network
constructed from the paper, we can gain insights into the degree of
novelty and originality of the research work (Hou et al., 2022; Luo
et al., 2022). This provides a quantifiable way to assess the paper’s
contribution to advancing the state-of-the-art in the field.

When calculating the semantic similarity, we employ the SPECTER
pre-trained language model, which is suitable for computing semantic
similarity in the context of scientific papers. SPECTER (Cohan et al.,
2020) is based on the SciBERT model and further trained on a corpus
that includes citation relationships. Importantly, the word embeddings
generated by SPECTER can be used directly for semantic similarity
calculations without the need for additional fine-tuning.

The formula for calculating the novelty of knowledge entity pairs is
expressed as follows:

𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝐸𝑛𝑡𝑖𝑡𝑦_𝑝𝑎𝑖𝑟𝑠𝑖) = 1 −

∑𝑛
𝑗=1 𝑆𝑖𝑚(𝐸𝑛𝑡𝑖𝑡𝑦_𝑝𝑎𝑖𝑟𝑠𝑖, 𝐸𝑛𝑡𝑖𝑡𝑦_𝑝𝑎𝑖𝑟𝑠𝑗 )

𝑛
(3)

In Eq. (3), 𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝐸𝑛𝑡𝑖𝑡𝑦_𝑝𝑎𝑖𝑟𝑠𝑖) represents the novelty of the 𝑖th
entity pair, 𝑆𝑖𝑚() represents the cosine similarity between the word
embeddings of the computed entity pairs, and 𝑛 represents the number
of knowledge entity pairs in the related field level network.

Subsequently, the novelty of the paper is calculated in two steps.
Firstly, we compute the weights of each entity pair in the paper. Then,
we determine the novelty of all entity pairs in the paper based on their
respective weights, summing them to obtain the overall novelty of the
paper. The calculation process is depicted in the following equations:

𝑊 𝑒𝑖𝑔ℎ𝑡(𝐸𝑛𝑡𝑖𝑡𝑦_𝑝𝑎𝑖𝑟𝑠𝑖) =
𝐶𝑜(𝐸𝑛𝑡𝑖𝑡𝑦_𝑝𝑎𝑖𝑟𝑠𝑖)

∑𝑚
𝑗=1 𝐶𝑜(𝐸𝑛𝑡𝑖𝑡𝑦_𝑝𝑎𝑖𝑟𝑠𝑗 )

(4)

𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝑃𝑎𝑝𝑒𝑟𝑖) =
𝑚
∑

𝑗=1
𝑊 𝑒𝑖𝑔ℎ𝑡(𝐸𝑛𝑡𝑖𝑡𝑦_𝑝𝑎𝑖𝑟𝑠𝑗 )×𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝐸𝑛𝑡𝑖𝑡𝑦_𝑝𝑎𝑖𝑟𝑠𝑗 )

(5)

In the above equation, 𝑊 𝑒𝑖𝑔ℎ𝑡(𝐸𝑛𝑡𝑖𝑡𝑦_𝑝𝑎𝑖𝑟𝑠𝑖) denotes the weight
of the 𝑖th entity pair, 𝐶𝑜(𝐸𝑛𝑡𝑖𝑡𝑦_𝑝𝑎𝑖𝑟𝑠𝑖) denotes the frequency of co-
occurrence of entity pairs, 𝑚 denotes the number of entity pairs in the
paper, and 𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝑃𝑎𝑝𝑒𝑟𝑖) denotes the novelty of the 𝑖th paper.

3.3.5. Significance features construction
The significance of a scientific paper can be measured by the

changes in its knowledge entity network. In the dynamic landscape
of scientific development, different knowledge domains interweave
and integrate, forming a complex network. To quantify the dynamic
changes in the structure of this complex network, researchers have pro-
posed metrics such as degree structure entropy, betweenness structure
entropy, and structure entropy ratio (Xu et al., 2022; Zhang and Li,
2022).

Degree structure entropy calculates the distribution of node degrees
within the network. The more uniform the degree distribution, the
higher the degree structure entropy, and the more complex the network
structure. Betweenness structure entropy measures the centrality of the
nodes, and the more uniform the betweenness distribution, the more
complex the network structure. The structure entropy ratio is the ratio
of the two, which reflects the relative complexity of the degree and
betweenness distributions in the network. It incorporates both local
and global information, and can identify cases of similar distributions,
providing a more comprehensive measure of network complexity. By
comparing the changes in structure entropy between the paper-level
network and the paper-related field alignment level network, we can
quantify the influence of the new knowledge introduced in the scientific
paper. This allows us to assess the significance of the paper within the
broader context of the research field. The schematic diagram of this
process is illustrated in Fig. 2:
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Fig. 2. Quantifying the significance of the paper based on knowledge entity networks.
Different colored circles represent different knowledge entities, dotted lines represent
the same knowledge entities, solid lines represent the existence of co-occurrence
between two knowledge entities and the thickness of the solid line reflects the degree
of co-occurrence.

The formulas for degree structural entropy (𝑆𝑑), betweenness struc-
tural entropy (𝑆𝑏), and structural entropy ratio (𝑆𝑟) are shown below:

𝑆𝑑 = −
𝑛
∑

𝑖=1

𝑑𝑖
𝑛
log2

𝑑𝑖
𝑛

(6)

𝑆𝑏 = −
𝑛
∑

𝑖=1

𝑏𝑖
𝑛
log2

𝑏𝑖
𝑛

(7)

𝑆𝑟 =
𝑆𝑑 − 𝑆𝑏

𝑆𝑑
(8)

The above formulas use 𝑆𝑑 , 𝑆𝑏, and 𝑆𝑟 to represent degree structural
entropy, betweenness structural entropy, and structural entropy ratio,
respectively. Here, 𝑛 represents the number of knowledge entities,
and 𝑑𝑖 and 𝑏𝑖 represent the degree and betweenness of an entity,
respectively. Here are the formulas for degree (𝑑𝑖) and betweenness (𝑏𝑖)
of a knowledge entity:

𝑑𝑖 =
𝑛
∑

𝑗=1
𝐴𝑖𝑗 (9)

where 𝐴𝑖𝑗 represents the adjacency matrix element between entity 𝑖 and
entity 𝑗.

𝑏𝑖 =
∑

𝑗≠𝑖≠𝑘

𝜎𝑗𝑘(𝑖)
𝜎𝑗𝑘

(10)

where 𝜎𝑗𝑘 is the total number of shortest paths from entity 𝑗 to entity
𝑘, and 𝜎𝑗𝑘(𝑖) is the number of those paths that pass through entity 𝑖.

The intrinsic network characteristics of the scientific paper itself can
also reflect its quality. Papers with groundbreaking innovations tend
to exhibit unique network topological structures (Min et al., 2021).
Therefore, we can employ network analysis metrics to evaluate the
structural features of the paper’s knowledge entity network, including:
number of nodes, number of edges, average degree, network density,
average clustering coefficient, maximum betweenness centrality, maxi-
mum closeness centrality, maximum eigenvector centrality and number
of connected components. These metrics can provide insights into the
complexity, connectivity, and centrality of the knowledge entities and
their relationships within the paper’s network. The detailed calculation
formulas for these network measures can be found in the work by Min
et al. (2021).

The references cited in the paper can also help determine its sig-
nificance. The higher the average citation count of the references,
the more significant the research topic addressed in the paper, and
the potentially higher the quality of the paper (Kousha and Thelwall,
2023). Therefore, we also analyze the citation counts of the references
included in the paper. This metric provides further insights into the
prominence and impact of the prior work that the paper builds upon.



Journal of King Saud University - Computer and Information Sciences 36 (2024) 102119Z. Wang et al.

t
w
2

c
a
p
s
a
g
f
q
t
p

In summary, we have constructed a set of features to assess the
quality of scientific papers, including integrity, clarity, novelty, and
importance. These features are derived from the paper’s metadata and
knowledge entity network, and are supported by empirical evidence
from related studies, while being readily available a priori. For detailed
explanations of each feature, please refer to Appendix A.3.

3.4. Machine learning model development and evaluation

In scientific paper quality evaluation, conventional machine learn-
ing models have traditionally been utilized to predict paper quality
based on manually crafted features, often offering a certain level of
interpretability (Kang et al., 2018; Thelwall, 2022). Noteworthy ma-
chine learning models include support vector machines (SVM), decision
trees (DT), random forests (RF), k-nearest neighbors (KNN), extreme
gradient boosting (XGBoost), gradient boosting for classifiers (GBC),
and adaptive boosting for classifiers (ABC), among others.

The advent of deep learning algorithms has witnessed remarkable
performance in text representation, with pre-trained language models
gaining significant traction in quality assessment studies. A prominent
pre-trained language model, BERT (Devlin et al., 2018), undergoes
extensive data pre-training, capturing global word and sentence de-
pendencies through a bidirectional self-attention mechanism. It can be
fine-tuned for specialized tasks with limited data. Building on BERT’s
foundation, subsequent models trained on scientific literature, such as
SciBERT (Beltagy et al., 2019) and SPECTER (Cohan et al., 2020),
as well as models with expanded parameter sizes and training data,
like RoBERTa (Liu et al., 2019), have emerged. However, models like
BERT have token limitations, requiring chunking paper content (van
Dongen et al., 2020) or inputting only the title and abstract data (Xue
et al., 2023). Diverging from traditional machine learning models, deep
learning models, exemplified by pre-trained language models, can auto-
matically extract features from scientific papers without manual feature
engineering. Nonetheless, this characteristic also poses challenges to
model interpretability. This study will compare traditional machine
learning models with pre-trained language models in the classification
task of assessing the quality of scientific papers.

4. Empirical evaluation

In this section, we describe the datasets, statistical analysis of the
networks, experimental setting, evaluation metrics, and results of the
experiments.

4.1. Datasets and gold standard

We collected 4922 papers submitted to ICLR 2023. Following the
screening, 1098 articles were excluded due to formatting issues, scope
mismatches, or preprints. The remaining 3824 papers were parsed into
XML format using the GROBID1 tool. Out of these, 14 papers encoun-
ered parsing problems and were subsequently excluded. Ultimately,
e obtained a dataset of 3810 papers, comprising 1567 accepted and
243 rejected papers.

To develop the gold standard for evaluating paper quality, we
onsidered the necessity of establishing consensus among reviewers
nd area chairs. To achieve this, we utilized the confidence scores
rovided by anonymous reviewers in their reviews. These confidence
cores were used to adjust the impact weighting of the review results,
ssigning less weight to reviews with lower confidence levels. The
oal was to minimize the influence of unconfident reviews on the
inal assessment of paper quality. For more details on combining paper
uality scores, self-confidence levels, and their division, please refer
o Appendix A.2. Descriptive information for the experimental data is
rovided in Table 3.

1 https://grobid.readthedocs.io/en/latest/Introduction/.
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Table 3
The descriptive information for the ICLR 2023 dataset.

Number Mean Std Min Max

Accepted paper 1409 6.37 0.74 5.22 9.18
Disputed paper 737 5.44 0.47 3.43 7.07
Rejected paper 1664 4.14 0.77 1 5.21

Table 4
The top 10 most frequent pairs of entities and their entity types in the arXiv_cs
network.

Entity1 (Type) Entity2 (Type) Number of
co-occurrence

Deep neural network (Method) Neural network (Method) 606
Artificial intelligence (Task) Machine learning (Method) 593
Deep learning (Method) Deep neural network

(Method)
523

Edge (Other Scientific Term) Graph (Other Scientific
Term)

508

Deep learning (Method) Machine learning (Method) 473
Deep learning (Method) Deep learning model

(Method)
449

Graph (Other Scientific Term) Graph neural network
(Method)

395

Computer vision (Task) Deep learning (Method) 391
Adversarial attack (Other
Scientific Term)

Robustness (Metric) 386

4.2. The statistical analysis of networks

We used the SciNERTopic model to extract knowledge entities from
arXiv computer science domain literature and ICLR 2023 papers, re-
spectively, and constructed the corresponding co-occurrence networks.
Finally, the two networks’ entity pairs were 10,391,013 and 6,535,432,
respectively. The distribution of knowledge entity types for the two
networks is shown in Fig. 3.

From Fig. 3, we observe that the key knowledge entities in the
arXiv_cs dataset are methods, other scientific terms, and task types,
while the proportion of metrics and material entities is relatively
small, yet each category contains over 1,500,000 entities. This suggests
that the arXiv_cs dataset contains a wider and more diverse range of
knowledge entities in terms of both quantity and type. Table 4 lists
the top 10 pairs of knowledge entities with the highest co-occurrence
rate in the arXiv_cs network. This indicates that the arXiv_cs network
is primarily focused on areas such as machine learning, deep learning,
and graph neural networks, which is consistent with the themes of
the ICLR 2023 conference. Considering the quantity and distribution
of knowledge entity types, as well as their alignment with the relevant
research domains, the knowledge entity network constructed from the
arXiv_cs dataset appears to be a suitable knowledge source.

4.3. Experimental setup

We experimented with two classification tasks (as introduced pre-
viously) on the ICLR 2023 dataset using the gold standard. The exper-
imental environment was as follows: Python 3.8 as the programming
language, scikit-learn2 for machine learning models, Windows 11 as
the operating system, a 12th generation Intel Core i7-12700K CPU, an
NVIDIA GeForce RTX 3070Ti GPU, and PyTorch version 1.10.

For machine learning models, we employed a range of commonly
used and well-performing classifiers, including the linear model SVM,
tree-based models DT and RF, distance-based model KNN, and ensem-
ble models XGB, GBC, and ABC. These models have been widely applied
in the task of paper quality assessment (Thelwall, 2022; Basuki and
Tsuchiya, 2022; Kousha and Thelwall, 2023; Thelwall et al., 2023b).

2 https://scikit-learn.org/stable/index.html.

https://grobid.readthedocs.io/en/latest/Introduction/
https://scikit-learn.org/stable/index.html


Journal of King Saud University - Computer and Information Sciences 36 (2024) 102119Z. Wang et al.
Fig. 3. The distribution of knowledge entity types for the two networks.
Regarding the hyperparameter settings, we utilized grid search to
determine the optimal hyperparameters for each classifier. To address
the class imbalance in the dataset, we applied the SMOTE algorithm
to oversample the training set. Additionally, we performed mean and
standard deviation normalization to standardize the features.

For pre-trained language models, we selected BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019), SciBERT (Beltagy et al., 2019),
SPECTER (Cohan et al., 2020), SPECTER2, THExt-cs-sciBERT (La Qua-
tra and Cagliero, 2022), and CS_RoBERTa3 (Singh et al., 2022). These
models have been widely used in text classification tasks, and the
SciBERT, SPECTER, SPECTER2, THExt-cs-sciBERT, and CS_RoBERTa
models have been further trained on scientific text, making them more
suitable for tasks in the scientific domain. We fine-tuned these models
on the title and abstract text from the ICLR2023 dataset to predict
the quality labels of the papers. For the fine-tuning hyperparameters,
we set the batch size to 64, employed the Adam optimizer for pa-
rameter optimization, and set the learning rate to 2e-5, the maximum
sequence length to 512, and the dropout rate to 0.3 to address potential
overfitting issues.

Additionally, we employed several tools in the construction of the
quality features. We utilized a state-of-the-art deep learning model
trained on the Multicite dataset (Lauscher et al., 2021) for citation
function classification. The citation counts of the references were re-
trieved using the Semantic Scholar API (Kinney et al., 2023), with a
data collection deadline of July 10, 2023. Readability indices for the
titles and abstracts were calculated using the TextSTAT tool. In order to
obtain a relevant literature corpus, we compiled a collection of 255,297
computer science papers from arXiv, including papers from previous
ICLR conferences. To ensure the relevance and currency of the corpus,
we restricted the timeframe to papers published between January
1, 2019, and August 31, 2022. Papers published beyond September
2022 were not included, as the ICLR 2023 conference began accepting
submissions in that month.

4.4. Evaluation metrics

We used accuracy, precision, recall, and F1 score as the evaluation
metrics for the classification models since they are the most commonly
used metrics. In addition, we used two different metric calculation
methods, weighted and binary, for the ADR and AR tasks, respectively,
to minimize possible biases in the evaluation results.

3 https://huggingface.co/allenai/cs_roberta_base.
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4.5. Experimental results and analysis

4.5.1. Overall results
The overall results of the experiments are presented in Table 5,

which illustrates the best performance of various models for the ADR
and AR tasks. Fig. 4 depicts the confusion matrices of the RF model on
the test set for the ADR task (left) and the AR task (right), respectively.
Due to the input length limitation of PLMs, we only fine-tuned the
models on the title and abstract of the papers. This can effectively
avoid the redundant information in the full text and improve the model
performance (Xue et al., 2023).

From the results, we make the following observations:

• Model performance comparison: The RF model achieved the best
performance on both the ADR and AR tasks, followed by the
XGB model. This suggests that tree-based methods are effective
for the paper quality classification task, as they can capture
the complex nonlinear relationships between various features
and paper quality levels. The F1 scores of the SVM, RF, XGB,
and GBC models all exceeded 0.7, with the RF model reaching
0.762, indicating that the constructed machine learning models
can effectively differentiate paper quality and have potential for
practical application.

• ML vs. PLMs: The traditional ML models significantly outper-
formed the PLMs on both the ADR and AR tasks. This suggests
that the feature engineering using metadata and knowledge entity
networks was successful, while the general language models may
suffer from overfitting or insufficient generalization ability. Fur-
thermore, PLMs lack interpretability in the classification process,
making it unclear whether the classification is based on seman-
tic similarity or if the models have truly learned the features
indicating paper quality.

• ADR vs. AR: The three-class ADR task is more complex than the
two-class AR task, and the performance metrics are generally
higher for the AR task across different models. The three-class
problem requires the model to learn a more complex decision
boundary to distinguish between Accepted, Disputed, and Rejected
paper quality categories. Additionally, in the real world, Disputed
papers are those that experts find difficult to determine, and the
assessment of their quality should be more cautious.

To further investigate the impact of fine-tuning PLMs on titles and
abstracts for enhancing paper quality assessment, we employed the
SPECTER2 model. SPECTER2 has demonstrated superior performance
on the aforementioned tasks. We encoded the title and abstract text
by extracting the [CLS] token output from each text. The [CLS] token,

https://huggingface.co/allenai/cs_roberta_base
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Table 5
The best results of different models on the ADR and AR tasks.

Model Accuracy Precision Recall F1 score

ADR AR ADR AR ADR AR ADR AR

ML

SVM 0.588 0.704 0.594 0.679 0.588 0.792 0.589 0.731
DT 0.540 0.643 0.538 0.642 0.540 0.674 0.539 0.657
RF 0.714 0.746 0.719 0.729 0.714 0.796 0.715 0.762
KNN 0.531 0.653 0.550 0.625 0.531 0.794 0.512 0.699
XGB 0.678 0.734 0.685 0.726 0.678 0.766 0.680 0.745
GBC 0.601 0.713 0.612 0.695 0.601 0.777 0.602 0.733
ABC 0.521 0.675 0.527 0.667 0.521 0.720 0.522 0.693

PLMs

BERT 0.401 0.529 0.405 0.450 0.426 0.559 0.405 0.499
RoBERTa 0.411 0.540 0.414 0.464 0.440 0.562 0.416 0.508
SciBERT 0.394 0.573 0.395 0.484 0.400 0.515 0.397 0.499
SPECTER 0.409 0.557 0.411 0.482 0.416 0.528 0.413 0.504
SPECTER2 0.417 0.573 0.420 0.462 0.443 0.622 0.393 0.530
THExt-cs-sciBERT 0.397 0.529 0.399 0.450 0.410 0.538 0.397 0.490
CS_RoBERTa 0.404 0.557 0.406 0.483 0.426 0.431 0.399 0.456

SPECTER2 + ML

SVM 0.560 0.668 0.453 0.584 0.559 0.586 0.499 0.585
DT 0.433 0.593 0.433 0.490 0.433 0.497 0.432 0.494
RF 0.534 0.627 0.428 0.550 0.534 0.365 0.473 0.439
KNN 0.465 0.574 0.447 0.467 0.465 0.487 0.451 0.477
XGB 0.545 0.650 0.496 0.561 0.545 0.563 0.502 0.562
GBC 0.556 0.659 0.536 0.574 0.556 0.563 0.511 0.568
ABC 0.524 0.656 0.493 0.564 0.524 0.605 0.496 0.584

Note: Values in bold represent the best results, and underlining represents the second-best results.
Fig. 4. The confusion matrix for the test set on the classification tasks.
inserted at the beginning of each text segment in the input sequence,
captures the contextual information of the entire sequence within
SPECTER2’s internal representation (Gomes et al., 2023).

We then used these embedding feature vectors, along with other
features, as input to ML classifiers for evaluation. Our results indicated
that the performance of the SPECTER2+ML model improved compared
to the model fine-tuned on titles and abstracts. However, it still did
not surpass the performance of the ML model without text embeddings.
This suggests that the semantic information in titles and abstracts may
not fully capture the quality characteristics of a paper. Instead, titles
and abstracts might reflect the classification of the research field more
than the paper’s quality.

4.5.2. Feature analysis
We conducted feature analysis to identify the features that effec-

tively influence the evaluation of the quality of scientific papers. We
eliminated the features of each dimension sequentially. Table 6 showed
the performance changes of the RF model on the AR task, compared to
the original best results, when different types of features were removed
one by one.
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The feature analysis results indicate that Integrity, Clarity, Novelty,
and Significance are all important for scientific paper quality. Integrity
had the greatest impact on the RF model’s AR task performance, with
its removal causing a significant decline. This suggests Integrity is the
most crucial factor in evaluating paper quality for the AR task, followed
by Clarity, Novelty, and Significance. Scientific articles should prioritize
integrity and clarity to ensure effective communication of ideas and
drive scientific progress. Novelty and Significance represent the value
of scientific articles. High-quality papers should contribute novel and
significant knowledge.

To further investigate the impact of each fine-grained feature on
model performance, we conducted an interpretability analysis using
the SHAP method on the RF model, as shown in Fig. 5. The SHAP
method (Lundberg and Lee, 2017), derived from the Shapley value in
game theory, assigns a value to each feature that represents its contri-
bution to the prediction. The sum of all feature contributions equals the
final prediction, making the model’s predictions interpretable.

Observing Fig. 5, we can draw the following conclusions:
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Table 6
Feature analysis results of the RF model on the AR task.

Accuracy Precision Recall F1 score

All features 0.746 0.729 0.796 0.762
w/o Integrity 0.699 (−0.047) 0.660 (−0.069) 0.767 (−0.029) 0.710 (−0.052)
w/o Clarity 0.705 (−0.041) 0.664 (−0.065) 0.777 (−0.020) 0.716 (−0.046)
w/o Novelty 0.722 (−0.024) 0.679 (−0.050) 0.793 (−0.003) 0.732 (−0.030)
w/o Significance 0.725 (−0.021) 0.683 (−0.046) 0.793 (−0.003) 0.734 (−0.027)

Note: w/o indicated that the features under this dimension were eliminated in the model training. Values in parentheses indicate differences
from complete performance.
Fig. 5. SHAP-based feature importance analysis for paper quality evaluation. Appendix A.3 describes the specific meaning of each feature.
• For integrity, the inclusion of appendices, a higher proportion
of recent references, and a greater number of references that
engage with and compare relevant studies can positively con-
tribute to the paper’s integrity. Conversely, an overreliance on
heuristic, background, extended, and future work citations may
indicate a lack of the paper’s own theoretical and methodological
framework, compromising its independence and systematicity,
and consequently impacting its integrity.

• For clarity, a greater number of words, tables, figures, and for-
mulas in the main text can more intuitively present the research
results, enhancing the paper’s comprehensibility. However, the
readability indices demonstrate varied influences. Metrics such as
ARI index, Linsear Write formula, and Coleman-Liau index mea-
sure lexical difficulty and sentence complexity, reflecting the pa-
per’s technicality. Conversely, SMOG index, Flesch–Kincaid Grade
level, and Gunning Fog index assess the colloquialism and read-
ability of the language. The opposing effects of these two aspects
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suggest that simplicity does not necessarily equate to high quality.
In fact, papers with greater technicality and complexity often
represent the author’s deeper understanding and insights in the
field.

• For novelty, new nodes represent new knowledge, and the intro-
duction of more new nodes suggests that the paper covers more
novel perspectives and ideas, which can enhance its innovative-
ness. However, the novelty of new edges and knowledge entity
pairs exhibits a negative influence, which may indicate that the
paper’s knowledge recombination has not reached the expected
effect, or the connections with existing knowledge are insuffi-
cient, failing to fully absorb and integrate previous research, and
consequently impacting the calculated novelty.

• For significance, a high eigenvector centrality indicates that the
paper has core knowledge entities, while a larger number of
connected components suggests a broader range of knowledge
covered, implying that high-quality papers should have a certain
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Fig. 6. SHAP feature importance analysis for case 1.
Fig. 7. SHAP feature importance analysis for case 2.
degree of focus. Regarding structural entropy, larger degree and
betweenness entropy have negative impacts, as they reflect di-
vergence from the domain’s knowledge structure. Conversely, a
larger structural entropy ratio implies that although the overall
difference is large, the difference in degree distribution dom-
inates, while the difference in key nodes is relatively small.
This suggests that the paper may have absorbed and integrated
mainstream knowledge while also supplementing and developing
some new knowledge structures, forming a certain degree of
innovation.

4.5.3. Case study
To compare how scientific papers are assessed based on various

features, we randomly selected two high-quality articles (top 5%) and
two low-quality ones (rejected). Table 7 outlines the details. Figs. 6,
7, 8, and 9 present the SHAP-based interpretability analysis for four
case studies. 𝐸[𝑓 (𝑋)] represents the classification threshold, while 𝑓 (𝑥)
denotes the model’s calculated result. Please note that the values in the
figure have been standardized.
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Table 7
Four randomly selected papers from ICLR 2023.

Title Paper decision

Case 1 Targeted Hyperparameter Optimization with
Lexicographic Preferences Over Multiple Objectives

Accept: top5%

Case 2 Emergent World Representations: Exploring a
Sequence Model Trained on a Synthetic Task

Accept: top5%

Case 3 Music-to-Text Synesthesia: Generating Descriptive
Text from Music Recordings

Reject

Case 4 Policy Architectures for Compositional
Generalization in Control

Reject

The first paper focused on multi-objective hyperparameter optimiza-
tion, garnering strong support for its innovative approach using lexico-
graphic preferences. The second paper explored whether transformers
learned reasonable world-state representations, earning acclaim for its
significant findings. The third paper on music-to-text synesthesia faced
criticism for terminology use but lack of recognized related work. The
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Fig. 8. SHAP feature importance analysis for case 3.
Fig. 9. SHAP feature importance analysis for case 4.
fourth paper proposed Entity-Factored Markov Decision Processes, but
reviewers found similar results in existing work. From the four cases,
we can see that the contribution of different features varies across each
case. Multiple features interact and ultimately drive the movement of
the result along the horizontal axis. This means that, in evaluating
paper quality, while features like the presence of an Appendix play
a significant role, the final judgment must consider a comprehensive
assessment of multiple features.

5. Vision on future considerations and implication

5.1. Future considerations

Quantifying and predicting the quality of scientific papers drives
scientific and technological advancements. In this context, we identify
three crucial directions for future research in assessing scientific paper
quality.

Firstly, quality standards for scientific papers should derive from
human experts. While citation count is a common proxy for quality,
12
it has limitations (Thelwall et al., 2023a). Highly cited articles may
not necessarily reflect true quality, and some low-cited papers might
be undervalued. Expert peer review, grounded in reviewers’ expertise,
provides a more objective assessment (Sun et al., 2022). Relying solely
on citation count makes it challenging to discern specific contributions
within a paper. Expert reviews reveal a paper’s core contributions and
diverse aspects of quality. Thus, human expert assessments should serve
as the quality standard. Platforms like OpenReview and F1000 Research
offer transparent review processes, storing valuable data for quality
assessment across disciplines.

Secondly, the quality of scientific papers can be evaluated through
knowledge networks. Papers contribute to and reshape existing knowl-
edge networks, influencing subsequent network changes (Min et al.,
2021; Xu et al., 2022). Constructing knowledge networks with semantic
relationships from full-text papers, rather than co-occurrence-based
networks, provides richer information (Ma et al., 2023). Feature ex-
traction methods, such as graph embedding algorithms (Xue et al.,
2023) and metrics like structural entropy (Xu et al., 2022) and the
entity-based disruption index (Wang et al., 2023), enable meaningful
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feature extraction from knowledge networks. These strategies facilitate
the measurement of scientific paper quality, offering insights into a
paper’s impact on domain knowledge.

Thirdly, text-generation techniques can be employed to evaluate
scientific paper quality. Unlike classification tasks, using models like
BART and T5, text generation can generate direct review feedback
(Wang et al., 2020; Yuan et al., 2022). Although challenging, large
language models like GPT-4 have shown promise in generating feed-
back (Liang et al., 2023). However, limitations arise due to a lack of
specific knowledge. Enhancing feedback specificity and actionability
requires providing detailed knowledge, including existing and novel do-
main knowledge. Combining knowledge networks with large language
models can improve the quality of generated feedback, enabling more
insightful evaluations of scientific papers.

5.2. Implication

Our research contributes in two main ways to the evaluation of sci-
entific paper quality. Firstly, we segment the quality of scientific papers
into four dimensions: integrity, clarity, novelty, and significance. We
derive coarse features and network features from both the metadata
of papers and the knowledge entity network. These features not only
enhance the effectiveness of machine learning models in identifying
paper quality but also offer a degree of interpretability. Integrity is
demonstrated by the adequacy of a paper’s references and citations,
conveying a comprehensive understanding of scientific knowledge.
Clarity is manifested in the paper’s readability, conveying the author’s
ideas and research content through an appropriate number of figures,
tables and formulas. Novelty is reflected in the paper’s contribution to
existing knowledge domains. Significance is gauged by the extent to
which the paper’s contribution reshapes existing knowledge domains.

Secondly, we emphasize the predictive value of fully exploiting
features that are accessible beforehand. Our approach holds practical
value as it does not require the accumulation of post-data such as
citations, thus saving time during the review process. Researchers can
utilize the time saved to expedite scientific output (Huisman and Smits,
2017). Additionally, our method holds implications for government
agencies and technology policymakers. Early allocation of research
funds and management of high-quality research outcomes is a com-
plex task that necessitates the accurate identification and targeted
support (Abramo and D’Angelo, 2020; Xu et al., 2021). By identifying
high-quality research outcomes based on pre-existing data, decision-
makers can make informed decisions and proactively steer the direction
of future technological development.

In summary, this research will benefit all stakeholders in the peer
review process and support scientific research advancement. The pre-
evaluation approach and enhanced interpretability make our study
valuable for evaluating the quality of scientific papers, aiding decision-
making, and fostering progress in academia and scientific knowledge.

6. Conclusion

Considering the explosion of the number of scientific papers pro-
duced nowadays, automatically pre-measuring the quality of these
papers can not only alleviate the pressure on peer reviewers but also
maintain the fairness of scientific evaluation. However, developing
an effective and explainable algorithm for the quality evaluation of
scientific articles is a non-trivial task. Therefore, this study proposed a
content-based quality evaluation framework for scientific papers using
coarse features and knowledge entity networks. The quality evalu-
ation criteria (i.e., integrity, clarity, novelty, and significance) were
summarized from the peer review guidelines of 11 top conferences in
computer science. We utilize the metadata of scientific papers and the
knowledge entity network that can be accessed beforehand to construct
corresponding features for the four quality aspects. We conducted
an empirical evaluation on two different classification tasks on the
13
ICLR 2023 dataset; the experiments demonstrate the effectiveness of
our proposed framework, and the content-based features also provide
excellent model interpretability. However, the accuracy of the proposed
method might be affected by the limitation of existing tools for parsing
PDFs and extracting knowledge entities. Another limitation of this
study is that we did not consider semantic relationships among different
knowledge entities when constructing the knowledge entity networks.

In the future, we will extend our framework to other domains by
constructing discipline-specific features for evaluating and predicting
paper quality. Considering the impressive capabilities of large language
models (e.g., GPT-3 and GPT-4 from OpenAI, LLaMA from Meta, and
PaLM2 from Google), particularly in text generation tasks within the
realm of natural language processing, we will also investigate the
potential integration of text generation techniques into the assessment
of scientific paper quality.
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Appendix

A.1. Abbreviations and acronyms used in this article

The abbreviations and acronyms used in this article are listed in
Table A.1.

A.2. The calculation process of the comprehensive quality score

We designed a comprehensive quality score for each paper by
combining the review score and the confidence score of each reviewing
expert. Specifically, (1) we calculated recommendation weights based
on the confidence scores for each expert. (2) Then, we calculated the
confidence-weighted review score. (3) Finally, we derived the overall
quality score of the paper by averaging all the weighted review scores.
The formula for calculating the recommendation weights is shown
in Eq. (A.1):

𝑊 𝑒𝑖𝑔ℎ𝑡𝑖 =
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖

∑𝑛
𝑗=1 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑗

(A.1)

In Eq. (A.1), 𝑊 𝑒𝑖𝑔ℎ𝑡𝑖 represents the recommendation weight of the
𝑖th expert, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖 represents the confidence level of the 𝑖th expert,
and 𝑛 represents the number of experts participating in the review of
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Fig. A.1. The distribution of the two scores related to whether the paper was accepted or rejected.
Table A.1
Abbreviations and acronyms used in this article.

Abbreviation Full name

ADR Accepted/Disputed/Rejected
AR Accepted/Rejected
ML Machine Learning
PLMs Pre-trained Language Models
CS Computer Science
NLP Natural Language Processing
BART Bidirectional and Auto-Regressive Transformers
NeurIPS The Neural Information Processing Systems Foundation
ICLR The International Conference on Learning Representations
ICML The International Conference on Machine Learning
ICCV The International Conference on Computer Vision
CVPR The IEEE/CVF Conference on Computer Vision and Pattern

Recognition
ACL Annual Meeting of the Association for Computational Linguistics
NAACL North American Chapter of the Association for Computational

Linguistics
EMNLP Conference on Empirical Methods in Natural Language Processing
ECCV European Conference on Computer Vision
IJCAI International Joint Conferences on Artificial Intelligence
AISTATS The International Conference on Artificial Intelligence and Statistics
BERT Bidirectional Encoder Representation from Transformers
SPECTER Scientific Paper Embeddings using Citation-informed TransformERs
SVM Support Vector Machine
DT Decision Trees
RF Random Forests
KNN K-nearest Neighbors
XGBoost Extreme Gradient Boosting
GBC Gradient Boosting for Classifiers
ABC Adaptive Boosting for Classifiers
RoBERTa Robustly optimized BERT approach
SHAP SHapley Additive exPlanations

Table A.2
The descriptive statistical information of the two scores.

The number
of papers

Mean Std Min Max

The average review scores 3810 5.25 1.20 1 8.80
The comprehensive quality score 3810 5.22 1.23 1 9.18

Note: The Spearman correlation coefficient for the two scores is 0.864 with a 𝑝-value
of 0.000.
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the paper. The formula for calculating the review score weighted by
the confidence score is shown in Eq. (A.2):

𝑊 𝑒𝑖𝑔ℎ𝑡(𝑆𝑐𝑜𝑟𝑒𝑖) = Weight𝑖 × Score𝑖 (A.2)

In Eq. (A.2), 𝑊 𝑒𝑖𝑔ℎ𝑡(𝑆𝑐𝑜𝑟𝑒𝑖) represents the review score weighted
by the confidence score, and 𝑆𝑐𝑜𝑟𝑒𝑖 represents the review score given
by the reviewers for the paper. Finally, the comprehensive quality
score of the paper is shown in Eq. (A.3), 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑆𝑐𝑜𝑟𝑒𝑖) represents the
comprehensive quality score of the 𝑖th paper.

𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑆𝑐𝑜𝑟𝑒𝑖) =

∑𝑛
𝑗=1 𝑊 𝑒𝑖𝑔ℎ𝑡(𝑆𝑐𝑜𝑟𝑒𝑗 )

𝑛
(A.3)

To further compare the quality scores and the average review scores,
we visualized each of the two with the acceptance and rejection of
the paper and fitted normal curves, as shown in Fig. A.1. Descriptive
statistics of the two scores are analyzed as shown in Table A.2.

Observing Fig. A.1, we found that the average review score and
the comprehensive quality score were extremely similar in terms of the
distribution of paper acceptance and rejection. However, in the region
of overlap between the acceptance fit curve and the rejection fit curve,
the number of papers measured by the comprehensive quality score was
smaller relative to the average review score (602 < 619). Additionally,
at the peaks of the two fitted curves, there were more papers measured
by the comprehensive quality score than by the average review score
(388 > 377, 301 > 297). In Table A.2, the means of the two scores were
very similar and there was a significant positive correlation. However,
the standard deviation and extreme values of the comprehensive qual-
ity score were slightly larger than the average review scores, implying a
more dispersed distribution of the composite quality scores. Despite the
nuances of these results, it can be seen that the comprehensive quality
score was a more reasonable measure of a paper, was closer to the final
decision of a paper, and better distinguished the quality of a paper than
the average review score.

A.3. Detailed information of all features

The complete list of all the features and their detailed description
are shown in Table A.3.
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Table A.3
Features for evaluating scientific paper quality.

Quality standard Feature name Description Feature type

Integrity

background_cites Background citations Coarse feature
differences_cites Difference citations Coarse feature
extends_cites Extension citations Coarse feature
future_work_cites Future work citations Coarse feature
motivation_cites Motivation citations Coarse feature
similarities_cites Similarity citations Coarse feature
uses_cites Use citations Coarse feature
references Number of references Coarse feature
have_appendix Presence of appendix Coarse feature
references_in_three_years Percentage of references in last 3 years Coarse feature

Clarity

flesch_kincaid_grade_level Readability index Coarse feature
smog_index Readability index Coarse feature
coleman_liau_index Readability index Coarse feature
ari_index Readability index Coarse feature
linsear_write_formula Readability index Coarse feature
gunning_fog_index Readability index Coarse feature
figures Number of figures Coarse feature
tables Number of tables Coarse feature
formulas Number of formulas Coarse feature
words Number of words in the main text Coarse feature

Novelty
new_nodes Number of new nodes in the paper’s knowledge network Knowledge network
new_edges Number of new edges in the paper’s knowledge network Knowledge network
knowledge_entity_pairs_novelty Semantic novelty of the paper’s knowledge entity pairs Knowledge network

Significance

sd Degree structure entropy Knowledge network
sb Betweenness structure entropy Knowledge network
sr Structure entropy ratio Knowledge network
ave_citation_of_references Average citation count of references Coarse feature
nodes Number of nodes in the paper’s knowledge network Knowledge network
edges Number of edges in the paper’s knowledge network Knowledge network
avg_degree Average degree in the paper’s knowledge network Knowledge network
network_density Density of the paper’s knowledge network Knowledge network
avg_clustering_coefficient Average clustering coefficient of the paper’s knowledge network Knowledge network
max_betweenness_centrality Maximum betweenness centrality in the paper’s knowledge network Knowledge network
max_closeness_centrality Maximum closeness centrality in the paper’s knowledge network Knowledge network
max_eigenvector_centrality Maximum eigenvector centrality in the paper’s knowledge network Knowledge network
components Number of connected components in the paper’s knowledge network Knowledge network
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