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 a b s t r a c t

Scientific novelty constitutes a fundamental catalyst for both disciplinary innovation and interdisciplinary 
progress. Nevertheless, prevailing approaches to novelty assessment predominantly emphasize a single analytical 
dimension–either the semantic content of the focal paper or its cited references. Content-based methodologies 
frequently fail to incorporate the foundational knowledge cited by the target publication, whereas reference-
based strategies tend to disregard the intrinsic conceptual contributions of the focal work itself. To address this 
limitation, the present study introduces a hybrid graph and large language model approach to jointly capture 
and integrate knowledge embedded in both the focal paper and its cited literature. The proposed method, which 
integrates knowledge recombination and propagation, is structured into four primary stages. First, prompt-based 
extraction techniques using general LLMs are applied to extract knowledge. Second, a Reference Knowledge Com-
bination Network (RKCN) is constructed to model the knowledge referenced by the focal paper. Third, the RKCN 
is initialized with representations generated by SciDeBERTa(CS), and a graph attention network is employed to 
propagate knowledge across the network. Finally, the novelty of the focal paper is quantified by aggregating 
the novelty scores of all internal knowledge combinations based on the propagated representations. Experimen-
tal evaluation in the domain of artificial intelligence (AI) demonstrates that the proposed method significantly 
outperforms existing baseline approaches in quantifying scientific novelty. Additional ablation studies further 
validate the contribution of the knowledge propagation module. A case study illustrates the interpretability of 
our approach, and a cross-field validation in Biomedical Engineering (BME) domain highlights its robustness 
and cross-domain generalizability. A multi-dimensional comparative analysis between award-winning and non-
award papers further reveals that the former generally incorporate a larger volume of knowledge and exhibit 
greater diversity in knowledge combinations. Moreover, while both groups encompass knowledge combinations 
spanning a wide range of novelty, award-winning papers display a stronger concentration at higher novelty lev-
els, in contrast to the more uniform distribution observed in non-award papers. Data, code, and more detailed 
results are publicly available at: https://github.com/haihua0913/graphLLM4ScientificNovelty.

1.  Introduction

Scientific research has been serving as a fundamental driving force 
for the advancement of human civilization. Through the relentless ex-
ploration of natural laws, discovery of new knowledge, and innova-
tion of technological methods, scientific research continually expands 
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the boundaries of human cognition, providing a powerful impetus for 
progress across economic, social, and technological domains (Mormina, 
2019). Within the trajectory of scientific development, scientific nov-
elty, especially in its radical form, serves as a pivotal role in advancing 
scientific systems (Min et al., 2021; Sun et al., 2022). A notable ex-
ample is the elucidation of the double-helix structure of DNA, which 
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not only redefined the theoretical foundations of molecular biology 
but also catalyzed technological advances in medicine, agriculture, and
forensic science (Hood & Galas, 2003; Macgregor & Poon, 2003). Such 
novel scientific discoveries do not merely accelerate progress within in-
dividual disciplines but also generate far-reaching impacts across inter-
disciplinary domains. In recent years, the identification and quantifica-
tion of scientific novelty have attracted increasing scholarly attention, 
emerging as a prominent area of investigation.

Contemporary scholarship has proposed a range of methodologies 
for assessing the novelty of scientific publications, which can be broadly 
classified into two categories: reference-based and content-based ap-
proaches. Reference-based methods evaluate novelty of a paper by ex-
amining the uniqueness of journal combinations cited within the paper 
(Foster et al., 2015; Lee et al., 2015; Uzzi et al., 2013; Wang et al., 
2017a). While these approaches can partially identify scientific novelty, 
they primarily focus on the journal level rather than the detailed con-
tent of individual papers. As a result, they may fail to capture the novel 
combinations of fine-grained knowledge within the references. In con-
trast, content-based methods leverage textual information, such as titles, 
abstracts, and the main body of scientific articles, to measure novelty. 
For example, some studies have employed Medical Subject Headings 
(MeSH) terms to determine whether a publication introduces new con-
cepts or exhibits unique term combinations (Azoulay et al., 2011; Ruan 
et al., 2023). Through bibliometric frequency analyses, these techniques 
calculate the proportion of innovative terminology presented. Nonethe-
less, such methods often fail to account for deeper semantic relationships 
among knowledge. Moreover, since MeSH is a domain-specific vocabu-
lary developed for the biomedical and life sciences, methods that rely 
on it are inherently constrained in their generalizability. The absence 
of similarly comprehensive and standardized knowledge frameworks in 
many other scientific domains limits the applicability and effectiveness 
of these approaches beyond their original context.

To overcome the limitations of previous methods, this research 
combines the strengths of both reference-based and content-based ap-
proaches. Building on the theory of knowledge recombination and utiliz-
ing knowledge propagation model, we introduce a fine-grained method 
to quantitatively evaluate the novelty of scientific papers, implemented 
through a hybrid Graph and LLM framework.

Innovation fundamentally arises from the processes of knowledge 
combination and recombination (Schilling & Phelps, 2007; Weitzman, 
1998). Innovation emerges when existing knowledge is restructured in 
novel ways (Wang et al., 2024a). For instance, the core of artificial 
intelligence–neural networks–was inspired by biological neural systems. 
One of the field’s pioneers, Geoffrey Hinton, was awarded the 2024 No-
bel Prize in Physics for his contributions. Likewise, genetic algorithms 
(Holland, 1992), mimic natural evolutionary processes to search for op-
timal solutions, with a single paper on the topic accumulating over 7000 
citations. The way knowledge is combined plays a crucial role in the 
likelihood of scientific novelty. Atypical, complementary, and heteroge-
neous knowledge combinations are more likely to give rise to disrup-
tive advancements (Fleming, 2001; Ma et al., 2023; Schilling & Green, 
2011), whereas typical, homogeneous combinations tend to yield only 
incremental improvements.

References form the foundation upon which researchers filter, inte-
grate, and recombine existing knowledge (Lubis et al., 2023; Shrivastava 
& Shrivastava, 2022). In writing a paper, researchers draw upon relevant 
literature to construct a knowledge base, which they then recombine to 
generate novel solutions to the problems they investigate. Accordingly, 
assessing the novelty of a focal paper’s knowledge combination requires 
not only examining the content of the paper itself but also accounting 
for the prior knowledge embedded in its references. In this context, we 
refer to the paper whose novelty is being evaluated as the focal paper, 
following the terminology used in prior work (Wu et al., 2019).

Building on this foundation, the present study proposes a system-
atic approach to quantifying scientific novelty by evaluating the novelty 
of knowledge combinations within focal papers. The method comprises 

four main steps. First, key knowledge is extracted from the abstracts 
of both the focal paper and its cited references. Second, relationships 
among the extracted knowledge are identified by analyzing their co-
occurrence within the reference abstracts. Based on these relationships, 
a knowledge association network is constructed from the cited refer-
ences. This network is also referred to as the Reference Knowledge Co-
occurrence Network (RKCN). Third, Graph Attention Networks (GATs) 
are employed to simulate the propagation of knowledge within the 
RKCN. This enables the model to learn the latent relationships between 
knowledge, positioning more strongly associated knowledge closer to-
gether in the embedding space. Finally, the similarity between each pair 
of knowledge in the focal paper is calculated using these embeddings. 
Lower similarity scores indicate more novel and less conventional com-
binations. By aggregating these novelty scores, the proposed method 
provides a quantitative framework for assessing the novelty of a paper.

The rest of paper is organized as follows: Section 2 reviews the re-
lated work in scientific novelty. Section 3 introduces the methodology 
to quantify scientific novelty with knowledge recombination and propa-
gation. Section 4 details the experimental design and settings. Section 5 
presents the results and discusses the findings. Section 6 summarizes the 
paper, discusses its limitations, and outlines future research directions.

2.  Related work

2.1.  Scientific novelty

Novelty is a widely recognized concept in scientific research and 
serves as a key criterion for assessing the academic value and contri-
bution of publications (Zhao & Zhang, 2025). Consequently, evaluating 
the novelty of academic papers has become a central concern in sciento-
metrics and research assessment (Hou et al., 2022). Research in this area 
generally follows two principal approaches: one focuses on the sources 
of novelty, while the other adopts a content-oriented interpretation.

The first line of research focuses on the intrinsic nature of scien-
tific novelty, aiming to uncover the underlying mechanisms that drive 
novel developments. This approach emphasizes the processes of knowl-
edge combination and reconfiguration that lead to transformative nov-
elty (Jang et al., 2023; Mukherjee et al., 2017; Uzzi et al., 2013). It 
investigates how scientists draw upon diverse knowledge domains and 
creatively integrate them to generate novel insights. highlighting the 
critical role of cognitive mechanisms, heterogeneous knowledge combi-
nations, and related factors in fostering scientific novelty. This theoret-
ical perspective underpins a range of reference-based evaluation meth-
ods.

Conversely, the second line of research centers on content-level as-
sessments of scientific novelty, with an emphasis on the novelty of the 
knowledge introduced within the focal paper itself. In his seminal work 
The Structure of Scientific Revolutions (1970), Thomas Kuhn proposed that 
scientific advancement unfolds through a cyclical process involving pe-
riods of normal science, crisis, revolutionary change, and the establish-
ment of new paradigms. This conceptualization offers a foundational 
lens through which transformative developments can be understood as 
signaling the transition of a field into a novel phase of intellectual evolu-
tion, characterized by the emergence of new paradigms (Ahuja & Mor-
ris Lampert, 2001; Casadevall & Fang, 2016). Building on this view, 
content-based evaluation approaches seek to assess the intrinsic novelty 
embedded within a paper.

In summary, the intrinsic nature perspective emphasizes the proac-
tive investigation of the generative mechanisms that give rise to scien-
tific novelty, conceptualizing novelty as the outcome of recombining ex-
isting knowledge in novel configurations. In contrast, the content-level 
approach centers on evaluating the novelty inherent in the content of 
the paper itself. Both frameworks contribute valuable theoretical foun-
dations for understanding and assessing scientific novelty. Integrating 
insights from these two perspectives, this study proposes a hybrid graph 
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and LLM framework that provides a systematic approach to predict and 
measure scientific novelty.

2.2.  Metrics for quantifying scientific novelty

Section 2.1 outlines the theoretical foundations underlying various 
metrics developed to quantify scientific novelty. Based on these theo-
retical distinctions, existing approaches can be broadly categorized into 
two types: reference-based evaluation methods and content-based eval-
uation methods.

Conceptually, reference-based evaluation methods emphasize the 
recombination of pre-existing knowledge. When these knowledge ele-
ments are combined in distant or unconventional ways, they are con-
sidered novel, a notion commonly referred to as “relative novelty” 
(Berlyne, 1960; Wang et al., 2025). In such frameworks, journals are 
typically treated proxies for knowledge elements (Zhao & Zhang, 2025). 
Early foundational work in this area can be traced to Uzzi et al. (2013), 
who introduced the Z-score to assess the novelty of scientific publi-
cations by identifying atypical combinations of cited journals. How-
ever, this approach is computationally intensive, both in terms of time 
and resource consumption. Subsequent studies sought to enhance this 
methodology. Lee et al. (2015) refined the computational strategy orig-
inally proposed by Uzzi et al. (2013), while Wang et al. (2017a) further 
optimized its computational complexity. These methods primarily as-
sess whether the journal combinations referenced in a study are rare 
or unconventional. Despite their contributions, several limitations per-
sist. First, their granularity is limited due to reliance on journal level 
analysis. As journals often encompass a wide range of topics and in-
terdisciplinary publications have become increasingly common, assess-
ing novelty at the journal level can be imprecise. Moreover, the rel-
atively small number of journals compared to the vast and nuanced 
spectrum of domain-specific knowledge restricts the capacity of these 
methods to detect fine-grained knowledge recombination. Second, such 
approaches concentrate exclusively on the novelty of referenced jour-
nal pairs, while neglecting the internal knowledge structure of the fo-
cal paper. Given that scientific novelty frequently arises from the in-
novative integration of knowledge within a focus study, overlooking 
this dimension can significantly undermine the accuracy of novelty
assessments.

Content-based approaches assess scientific novelty by leveraging tex-
tual features from the focal paper, including the title, abstract, and main 
body (Jeon et al., 2023; Shibayama et al., 2021; Wang et al., 2024b; Wu 
et al., 2025). A prominent subset of these methods employs Medical Sub-
ject Headings (MeSH), a standardized vocabulary system widely used 
in the biomedical and life sciences. These approaches quantify novelty 
by comparing the knowledge elements and their combinations within 
a given paper to those prevalent across the broader disciplinary land-
scape (Azoulay et al., 2011; Mishra & Torvik, 2016; Ruan et al., 2023). 
However, it is important to note that the application of MeSH terminol-
ogy is primarily restricted to a single discipline–biomedical and life sci-
ences. these methods necessitate access to all knowledge within a given 
field, making it challenging to apply in other disciplines. To address this 
limitation, subsequent research has adopted author-provided keywords 
as proxies for knowledge components within articles (Verhoeven et al., 
2016; Yan et al., 2020). Nonetheless, a central challenge remains: the ex-
haustive collection of all prior knowledge and knowledge combinations 
within a given domain is highly demanding and often infeasible. Addi-
tionally, some scholars have explored sentence-level features to identify 
novelty, particularly through the analysis of contribution sentences that 
may signal scientific breakthroughs. For instance, Chen and Fang (2019) 
proposed a method to extract novel ideas directly from abstracts. While 
such approaches can partially capture elements of novelty, their funda-
mental limitation lies in its binary classification approach to novelty. 
Specifically, this dichotomous assessment fails to reflect the continuous 
and nuanced spectrum of novelty, thereby excluding many valuable pa-
pers that exhibit high degrees of novelty. Moreover, these methods typ-

ically disregard the relationship between the focal paper and its cited 
references, failing to evaluate how the paper diverges from or extends 
prior knowledge.

In summary, reference-based methods predominantly assess novelty 
by analyzing the combinations of journals associated with cited refer-
ences, resulting in a relatively coarse level of granularity. Additionally, 
these approaches generally disregard the specific content of the focal 
paper itself. In contrast, content-based methods emphasize the intrinsic 
novelty of the focal paper’s textual content but often fail to account for 
the foundational role of its referenced knowledge. Consequently, they 
overlook the combinatorial structure and interrelationships among the 
cited knowledge components, which are crucial for a comprehensive 
understanding of scientific novelty.

To address the aforementioned limitations, this study introduces a 
fine-grained approach that integrates the advantages of both reference-
based and content-based methods while mitigating their respective 
shortcomings. Instead of treating the journal in which a paper is pub-
lished as the fundamental unit of knowledge, our method considers the 
knowledge within the paper itself. Unlike reference-based methods that 
focus on journal combinations, we construct a knowledge association 
network based on the referenced knowledge combinations and leverage 
advanced graph representation learning techniques to model the propa-
gation of knowledge. Through unsupervised learning, our approach en-
ables knowledge with stronger associations to learn representations that 
bring them closer in the embedding space. Finally, we center our analy-
sis on the focal paper, extracting knowledge from its abstract and identi-
fying the corresponding knowledge combinations. Using the previously 
learned knowledge representations, we compute the similarity between 
each knowledge combination within the focal paper. A high similarity 
score indicates a lower degree of novelty for the combination, whereas 
a low similarity score suggests a higher level of novelty. By aggregat-
ing the novelty scores of all knowledge combinations within the focal 
paper, this approach provides a quantitative and systematic framework 
for evaluating scientific novelty.

3.  Methodology

This paper proposes a comprehensive framework for quantifying 
novelty by analyzing the disparity between knowledge combinations 
within focal papers. The overall structure of this framework is illus-
trated in Fig. 1, which consists of four key components: Knowledge 
Extraction, Reference Knowledge Co-occurrence Network (RKCN) Con-
struction, Knowledge Propagation on RKCN, and Focal Paper Novelty 
Computation.

The knowledge extraction module is designed to extract existing 
knowledge from the abstracts of the references cited by the focal pa-
per, as well as the knowledge within the focal paper itself that re-
quire novelty assessment. The reference knowledge co-occurrence net-
work (RKCN) construction module identifies knowledge combinations 
within the cited references and constructs a co-occurrence network that 
captures the structural relationships among the referenced knowledge. 
The knowledge propagation on RKCN module utilizes Graph Attention 
Networks (GATs) to simulate the propagation dynamics of knowledge 
within the network. Through unsupervised learning, the model cap-
tures the latent relationships between knowledge, enabling knowledge 
with stronger associations to learn representations that are closer in the 
embedding space. This ensures that knowledge combinations with high 
relevance exhibit greater representational similarity, while more novel 
combinations maintain a higher degree of differentiation. Finally, the 
focal paper novelty computation module quantifies the degree of nov-
elty in the focal paper by computing the similarity between each pair 
of internal knowledge combinations based on the learned embeddings. 
A lower similarity score suggests a weaker prior association between 
the knowledge combination, indicating that the focal paper has com-
bined the two knowledge elements that were previously weakly associ-
ated, thereby establishing a new link. Building on similarity scores, we
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Fig. 1. Framework of measuring the novelty of paper based on knowledge recombination and propagation.
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propose a method for measuring novelty, which quantifies the degree 
of novelty exhibited by the focal paper.

3.1.  Knowledge extraction

Knowledge extraction plays a crucial role in academic research, fa-
cilitating the identification of knowledge utilized within studies (Nasar 
et al., 2018). It enables scholars to swiftly recognize and acquire 
key insights from vast volumes of research literature. This technique 
has been widely applied in various domains, including the construc-
tion of academic knowledge graphs (Al-Zaidy & Giles, 2017; Zhang 
et al., 2024), automated literature summarization (Bao et al., 2025; 
Hernández-Castañeda et al., 2022), topic analysis (Eshima et al., 2024; 
Lu et al., 2021), innovation detection (Wang et al., 2023; Zhao et al., 
2024), and scientific recommendation (Bai et al., 2019; Zhang & Zhu, 
2022).

The extraction of key knowledge from academic literature generally 
follows two primary approaches: extraction from abstracts and extrac-
tion from full texts. Studies have shown that extracting knowledge from 
abstracts rather than full texts can enhance extraction accuracy and ef-
ficiency (Popova & Danilova, 2014). Although full-text documents offer 
comprehensive information, they often contain extensive background 
material and ancillary content, which can obscure the identification of 
core scientific insights. In contrast, abstracts function as succinct sum-
maries that distill the critical elements of a paper, including the research 
context, methodologies, key findings, and conclusions (śauperl et al., 
2008; Weil, 1970). Their highly condensed logical structure makes them 
an excellent source for identifying core academic knowledge. Knowl-
edge extracted from abstracts more accurately reflects the principal re-
search themes, minimizes redundancy, and reduces the risk of misin-
terpretation. Consequently, abstract-based extraction presents a more 
targeted and reliable approach for identifying the core scientific contri-
butions of academic work, relative to full-text extraction.

Knowledge extraction typically follows one of two main approaches. 
The first is training-based extraction using language models (Fig. 2a), 
which requires a substantial amount of domain-specific annotated data 
for model training or fine-tuning. This approach is both time-consuming 

and labor-intensive, presenting significant challenges for practical im-
plementation. The second approach involves prompt-based extraction 
using general LLMs (Fig. 2b). This method eliminates the need for model 
retraining by relying solely on the adaptation of prompt templates, 
thereby offering greater flexibility and efficiency. In this study, we adopt 
the prompt-based extraction paradigm. Specifically, we employ GPT-4o 
as our primary LLM and include OLMo2:13b as a baseline for compar-
ative evaluation. The complete set of prompt templates is provided in 
Appendix A, and the overall extraction workflow is illustrated in Fig. 3. 
Formally, given an input abstract 𝑥, the extraction process consists of 
three stages. First, the abstract is embedded into the predefined prompt 
template via a mapping function (⋅), yielding a formatted prompt suit-
able for model inference. Second, this prompt is passed to the LLM, de-
noted as LLM(⋅), which generates the corresponding output in natural 
language form. Third, the model output is parsed by a deterministic 
function 𝑔(⋅) based on comma separation, resulting in a set of extracted 
textual knowledge {𝑇𝑘}𝐾𝑘=1, formally defined as follow: 

{𝑇𝑘}𝐾𝑘=1 = 𝑔
(

LLM
(

(𝑥)
)

)

. (1)

3.2.  Reference knowledge co-occurrence network construction

References constitute foundational sources of knowledge upon which 
authors build their research, forming the intellectual basis for scientific 
novelty. The primary objective of constructing a co-occurrence network 
is to uncover the intrinsic relationships among existing knowledge el-
ements (Zhu et al., 2015; Zong et al., 2013). By establishing a refer-
ence knowledge co-occurrence network (RKCN), we can not only ef-
fectively identify established knowledge combinations but also reveal 
latent associations between knowledge items that may not be directly 
linked, yet are connected through indirect pathways within the network 
structure. In this study, the co-occurrence window is precisely defined 
as encompassing the current sentence, the preceding sentence, and the 
subsequent sentence. For instance, if a knowledge element appears in 
sentence 𝑖 of an abstract, the knowledge found in sentence 𝑖 − 1 and 
sentence 𝑖 + 1 is considered to co-occur “directly” with it, indicating a 

Fig. 2. Comparison of knowledge extraction methods: training-based method and prompt-based method.
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Fig. 3. Examples of knowledge extraction leveraging prompt-based method with GPT-4o.

strong semantic association. This design is motivated by the observation 
that in concise texts such as abstracts, semantic information is typically 
concentrated in adjacent sentences, with minimal semantic extension to 
more distant parts of the text. Even when semantically related knowl-
edge appears in non-adjacent sentences, these weaker associations can 
still be captured through the knowledge propagation mechanism de-
scribed in Subsection 3.3. Thus, by restricting the co-occurrence window 
to a span of three sentences, the model effectively captures salient se-
mantic relationships between knowledge units. For example, if sentence 
𝑖 contains knowledge A, sentence 𝑖 + 1 contains knowledge B, and sen-
tence 𝑖 + 2 contains knowledge C, then according to the co-occurrence 
principle, A and B as well as B and C are directly co-occurring, reflect-
ing strong semantic ties. Although A and C do not directly co-occur, 
they remain connected in the co-occurrence network, allowing their in-
direct relationship to be inferred through propagation. This is referred 
to as “indirect” co-occurrence. This strategy of leveraging local contex-
tual windows has been widely adopted in various natural language pro-
cessing models, including n-gram models (Brown et al., 1992), convolu-
tional neural networks (Kim, 2017), long short-term memory networks 
(Hochreiter & Schmidhuber, 1997) and graph convolutional networks 
(Kipf & Welling, 2017), all of which have achieved notable success in 
capturing meaningful linguistic and semantic patterns.

Formally, given an input abstract segmented into sentences 
(𝑠1, 𝑠2,… , 𝑠𝐿) and a set of extracted knowledge elements {𝑇𝑘}𝐾𝑘=1, each 
annotated with its corresponding sentence position, we define two 
knowledge elements 𝑇𝑖 and 𝑇𝑗 as co-occurring if the absolute difference 
between their sentence indices is at most one. The co-occurrence indi-
cator is formally defined as: 

Cooccur(𝑇𝑖, 𝑇𝑗 ) =

{

1, if |pos(𝑇𝑖) − pos(𝑇𝑗 )| ≤ 1, 𝑖 ≠ 𝑗,
0, otherwise.

(2)

Based on the defined co-occurrence relation, we construct a knowl-
edge co-occurrence network (KCN) for the abstract of each reference, as 
illustrated in Fig. 4. In this network, each node represents an extracted 
knowledge element, and edges denote co-occurrence within adjacent 
sentences. The KCN is formally defined in Eq. 3. By subsequently merg-
ing all KCNs derived from the abstracts of the reference papers, we con-
struct the reference knowledge co-occurrence network (RKCN) for the 
focal paper, as described in Eq. 4. 

KCN = (𝑉 ,𝐸) where

{

𝑉 = {𝑇1, 𝑇2,… , 𝑇𝐾},
𝐸 = {(𝑇𝑖, 𝑇𝑗 ) ∣ Cooccur(𝑇𝑖, 𝑇𝑗 ) = 1}.

(3)

RKCN = (𝑉 ′, 𝐸′,𝑊 ′) where
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Fig. 4. An example of constructing KCN from a single paper’s abstract.

⎧

⎪

⎨

⎪

⎩

𝑉 ′ =
⋃

𝑉 ,
𝐸′ =

⋃

𝐸,
𝑊 ′(𝑇𝑖, 𝑇𝑗 ) = number of times (𝑇𝑖, 𝑇𝑗 ) appears across abstracts.

(4)

3.3.  Knowledge propagation on RKCN

A key prerequisite for conducting knowledge propagation on the ref-
erence knowledge co-occurrence network is obtaining high-quality se-
mantic representations of the knowledge nodes. Since these nodes are 
expressed in natural language, they must first be transformed into struc-
tured embeddings to support subsequent propagation using Graph Neu-
ral Networks. To accurately capture the semantic content of knowledge 
within the RKCN, this study employs SciDeBERTa(CS) for embedding 
representation. SciDeBERTa(CS) is a pre-trained language model (PLM) 
tailored specifically for the computer science domain (Jeong & Kim, 
2022). Compared to other domain-specific models such as SciBERT and 
S2ORC-SciBERT, SciDeBERTa(CS) consistently delivers superior perfor-
mance because of its deeper and more targeted pre-training on a large 
corpus of computer science literature. It has demonstrated state-of-the-
art results on multiple domain-relevant benchmarks. We therefore adopt 
SciDeBERTa(CS) to generate embeddings for the knowledge nodes in 

the RKCN, thereby ensuring semantically rich and contextually accurate 
representations for effective graph-based propagation.

In practice, each knowledge node in the RKCN corresponds to a tex-
tual description, denoted 𝑇𝑘. To obtain its semantic representation, we 
employ SciDeBERTa(CS) to encode each text sequence into a dense vec-
tor embedding. Specifically, given a textual input 𝑇𝑘, composed of a 
token sequence 𝑤1, 𝑤2,… , 𝑤𝑛, SciDeBERTa(CS) processes the sequence 
and outputs the corresponding embedding representation, defined as 
follows:

𝑋𝑘 = SciDeBERTa(𝑇𝑘) = {𝑥1, 𝑥2,… , 𝑥𝑛}, 𝑥𝑖 ∈ ℝ768 (5)

where 𝑥𝑖 represents the 768-dimensional hidden state of the 𝑖-th token.
To obtain a fixed-length embedding for each knowledge node, we 

apply mean pooling over all token embeddings, as follows:

𝑋𝑘 = 1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖 ∈ ℝ768 (6)

where, the resulting 768-dimensional vector 𝑋𝑘 serves as the initial fea-
ture representation for the knowledge node 𝑘 in the reference knowledge 
co-occurrence network.

In this section, knowledge propagation is formulated as an adap-
tive message passing process, in which each node aggregates informa-
tion from its neighbors using a multi-head attention mechanism, as

Fig. 5. GAT-based knowledge propagation from neighbors to target knowledge node.
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illustrated in Fig. 5. Given the RKCN graph 𝐺, each knowledge node 
𝑘 ∈ 𝐾 is initialized with an embedding representation 𝑋𝑘 obtained us-
ing SciDeBERTa(CS). The propagation process is then carried out using 
a Graph Attention Network (GAT), which enables the model to dynami-
cally attend to the most relevant neighboring nodes during information 
aggregation.

First, for each knowledge node k, we compute an attention score 
between 𝑘 and each of its neighbors 𝑣 based on their current feature 
representations. The attention score for the i-th attention head is defined 
as:

𝑒(𝑖)𝑘𝑣 = LeakyReLU
(

𝐚𝑇
[

𝑊 (𝑖)𝐡𝑘 ∥ 𝑊 (𝑖)𝐡𝑣
])

(7)

where:

• 𝑖 denotes the index of the attention head.
• 𝑊 (𝑖) ∈ ℝ𝑑×𝑑′  is a trainable weight matrix that projects the input fea-
tures into a lower-dimensional space of dimension 𝑑′.

• 𝐚 ∈ ℝ2𝑑′  is a trainable attention vector used to compute the raw at-
tention coefficients.

• ∥ denotes vector concatenation, enabling the model to jointly con-
sider the features of both nodes 𝑘 and 𝑣.

• 𝑒(𝑖)𝑘𝑣 represents the unnormalized attention coefficient, indicating the 
relative importance of node 𝑣 to node 𝑘 under the i-th attention head.

To ensure that each knowledge node aggregates information pro-
portionally from its neighbors, the raw attention scores are normalized 
using the softmax function, defined as:

𝛼(𝑖)𝑘𝑣 =
exp(𝑒(𝑖)𝑘𝑣)

∑

𝑗∈ (𝑘)
exp(𝑒(𝑖)𝑘𝑗 )

, 𝛼(𝑖)𝑘𝑣 ∈ [0, 1] (8)

where:

• 𝛼(𝑖)𝑘𝑣 denotes the normalized attention coefficient between knowledge 
node 𝑘 and its neighbor 𝑣 under the i-th attention head.

•  (𝑘) denotes the set of neighboring nodes of node 𝑘.

Finally, using the computed attention coefficients, information is 
propagated from neighboring knowledge nodes to the target node 
through a weighted aggregation mechanism. The update rule is defined 
as:

𝐡(𝑙+1)𝑘 =∥𝐼𝑖=1 𝜎

(

∑

𝑣∈ (𝑘)
𝛼(𝑖)𝑘𝑣𝐖

(𝑖)𝐡(𝑙)𝑣

)

(9)

where:

• 𝐡(𝑙)𝑣  denotes the feature vector of knowledge node 𝑣 at layer 𝑙, with 
𝐡(0)𝑣  corresponding to the initial input feature representation 𝐗𝑣 of 
knowledge node 𝑣.

• 𝑊 (𝑖) is a learnable weight matrix that performs a linear transforma-
tion under the i-th attention head.

• 𝛼(𝑖)𝑘𝑣 represents the normalized attention coefficient determining how 
much knowledge is propagated from knowledge node 𝑣 to knowledge 
node 𝑘.

• 𝜎 is a non-linear activation function that introduces model expres-
siveness and non-linearity.

• 𝐼 denotes the total number of attention heads, and ∥ indicates the 
concatenation of outputs from all heads.

To capture multi-scale relational dependencies, we adopt a multi-
layer GAT, progressively reducing the dimensionality of node feature 
representations across layers. Each layer refines the node embeddings 
by aggregating both local neighborhood information and higher-order 
relational structures. To improve training stability and prevent overfit-
ting, batch normalization and dropout are applied after each layer.

While GAT-based models effectively enable knowledge propagation, 
they face two key challenges: (i) ensuring effective propagation, i.e., 

verifying whether each knowledge node adequately integrates informa-
tion from its neighbors; and (ii) maintaining knowledge diversity and 
global structural distinctiveness, as over-propagation during multi-hop 
aggregation can cause node representations to become excessively sim-
ilar. This dilutes the uniqueness of individual nodes and obscures im-
portant global patterns. To address these issues and ensure high-quality 
knowledge propagation on the RKCN, we propose a dual-objective loss 
function, composed of:

1. Neighborhood aggregation loss: A local consistency term that en-
courages semantically similar representations among neighboring 
nodes, thus directly measuring propagation effectiveness. It is de-
fined as:
neigh = 1

||
∑

(𝑖,𝑗)∈

(

1 − cos(𝐡𝑖,𝐡𝑗 )
)

, (10)

where
•  is the set of edges in the graph, and || is its cardinality.
• 𝐡𝑖 and 𝐡𝑗 are the embeddings of nodes 𝑖 and 𝑗, respectively.
• cos(𝐡𝑖,𝐡𝑗 ) =

𝐡𝑖⋅𝐡𝑗
‖𝐡𝑖‖‖𝐡𝑗‖

 denotes the cosine similarity between the 
two node embeddings.
Although minimizing neigh promotes coherence among neigh-

boring nodes, over-minimization can result in over-smoothing, 
where, after multiple training epochs, node representations converge 
to similar values, losing their unique characteristics and the over-
all structural distinctions of the graph. To mitigate over-smoothing 
and preserve global-level distinctiveness, we introduce Structural 
Entropy Loss, which minimizes the structural entropy of the entire 
graph.

2. Structural entropy loss: A global diversity term that preserves the 
distinctiveness of node representations, mitigating the risk of over-
smoothing and excessive similarity. It is defined as:

entropy = − 1
𝑁

𝑁
∑

𝑖=1

𝑑out
∑

𝑗=1
𝑝𝑖𝑗 log

(

𝑝𝑖𝑗 + 𝜖
)

, (11)

where
• 𝑁 is the number of nodes in the graph.
• 𝑑out is the output dimensionality of node embeddings.
• 𝑝𝑖𝑗 is the softmax-normalized value of the 𝑗-th feature of node 𝑖.
• 𝜖 is a small constant added to ensure numerical stability.

To achieve a structured and balanced knowledge propagation pro-
cess, we integrate the above two objectives into a joint optimization 
function:

 = neigh + 𝜆entropy, (12)

where 𝜆 is a tunable hyperparameter that balances local consistency and 
global distinctiveness.

3.4.  Focal paper novelty computation

Novel knowledge is inherently built upon existing knowledge (Brock-
man & Morgan, 2003). In academic research, the novelty of a paper is of-
ten manifested through its unconventional combinations of pre-existing 
knowledge. Prior studies have shown that the introduction of novel 
ideas frequently arises from reconnecting weakly associated components 
within the current knowledge system (Uzzi et al., 2013; Xiao et al., 2022; 
Yan et al., 2020). In essence, when a paper successfully integrates knowl-
edge that were previously only weakly connected, it may offer fresh 
perspectives and potentially catalyze theoretical breakthroughs. Build-
ing on this insight, we propose a quantitative approach for evaluating 
the novelty of focal papers. Specifically, we utilize the embedding rep-
resentations derived through knowledge propagation to calculate the 
similarity between every pair of knowledge (𝑘1, 𝑘2) within the focal pa-
per. A lower similarity score indicates that the two knowledge elements 
were weak association in the existing literature, thereby suggesting that 
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Table 1 
Award-winning and non-award papers by year and conference.

Year
 Award-winning Papers  Non-award Papers

Total
 AAAI  ACL  CVPR  ICCV  ICML  IJCAI  NeurIPS  AAAI  ACL  CVPR  ICCV  ICML  IJCAI  NeurIPS

 1996  3  -  -  -  -  -  -  285  59  138  -  67  -  152  704
 1997  4  -  -  -  -  3  -  210  74  174  -  49  236  157  907
 1998  3  -  -  2  -  -  -  204  247  145  166  67  -  152  986
 1999  1  -  -  2  1  2  -  193  84  193  176  54  202  151  1059
 2000  4  -  1  -  -  -  -  230  80  229  -  152  -  154  850
 2001  -  2  1  2  -  1  -  -  69  273  219  81  200  198  1046
 2002  1  1  -  -  -  -  -  180  65  -  -  88  -  208  543
 2003  -  2  1  3  -  2  -  -  70  206  196  118  295  199  1092
 2004  1  1  1  -  -  -  -  194  88  257  -  118  -  208  868
 2005  1  1  1  1  1  3  -  325  134  107  246  134  348  208  1510
 2006  2  1  1  -  1  -  -  384  307  166  -  140  -  205  1207
 2007  2  1  1  1  1  3  -  367  204  538  389  150  477  218  2352
 2008  2  2  2  -  1  -  -  355  118  505  -  157  -  251  1393
 2009  -  3  1  1  1  2  -  -  119  382  308  180  343  263  1603
 2010  2  1  1  -  1  -  -  312  160  461  -  159  -  293  1390
 2011  2  1  1  1  1  3  -  318  164  439  339  152  488  307  2216
 2012  2  1  1  -  1  -  -  352  188  466  -  243  -  371  1625
 2013  2  1  1  1  2  2  3  250  328  471  454  282  495  358  2650
 2014  1  1  1  -  1  -  2  474  287  540  -  310  -  410  2027
 2015  1  2  1  1  2  2  2  674  318  602  526  269  648  402  3450
 2016  1  1  1  -  3  1  1  691  329  643  -  320  658  569  3218
 2017  1  1  2  1  1  1  3  786  303  782  621  434  781  677  4394
 2018  1  3  1  -  2  7  4  1102  437  979  -  620  864  1007  5027
 2019  1  1  1  1  2  1  1  1343  703  1294  1075  773  965  1427  7588
 2020  1  1  1  -  2  2  3  1864  778  1465  -  1084  777  1896  7874
 2021  2  1  1  1  1  3  8  1960  713  1660  1611  1183  719  2327  10190
 2022  1  4  1  -  10  1  12  1624  700  2072  -  1225  863  2823  9336
 2023  1  3  2  2  6  3  2  2021  1073  2355  497  1823  844  3539  12171
 total  43  36  26  20  41  42  41  16,698  8199  17,542  6823  10,432  10,203  19,130  89276

the paper has established a novel connection between them. To quan-
tify the novelty introduced by such combinations, we adopt the method 
proposed by Liu et al. (2022), which defines the novelty contribution 
of each pair of knowledge combinations based on 1 − cosine similarity. 
Since 1 − cosine similarity theoretically ranges from 0 to 2, we nor-
malize this value by dividing it by 2, ensuring that the final novelty 
score falls within the range [0, 1]. Formally, the novelty contribution of 
a knowledge pair is defined as:

 (𝑘1, 𝑘2) =

1 −
∑𝑛

𝑡=1 ℎ1,𝑡ℎ2,𝑡
√

∑𝑛
𝑡=1 ℎ

2
1,𝑡×

√

∑𝑛
𝑡=1 ℎ

2
2,𝑡

2
(13)

where  (𝑘1, 𝑘2) ∈ [0, 1]. A higher value of  (𝑘1, 𝑘2) indicates a greater 
degree of novelty in the knowledge combination, whereas a lower value 
suggests a more conventional or previously established relationship.

Finally, the overall novelty score of a focal paper is computed by 
summing the novelty contributions of all knowledge pairs it contains:
 =

∑

(𝑘1 ,𝑘2)∈𝑃
 (𝑘1, 𝑘2) (14)

where 𝑃  denotes the set of all knowledge combinations within the paper.
This novelty metric reflects the contribution of the focal paper in 

forming novel knowledge combinations. When a paper successfully in-
tegrates knowledge that was previously weakly associated, the resulting 
low similarity scores yield higher novelty contributions, thereby increas-
ing the overall novelty score. Through this quantitative framework, we 
introduce a systematic and interpretable metric for assessing scientific 
novelty.

4.  Experimental design

4.1.  Data

One major challenge in studying scientific novelty is the lack of a uni-
versally accepted and operational definition of novelty, as well as the 
absence of publicly available benchmark datasets that directly label the 

novelty level of individual scientific papers, making it difficult to objec-
tively validate novelty-related methods. As a result, most existing stud-
ies rely on indirect proxies. While early approaches often used citation 
counts, which suffer from time delays and confounding factors, more re-
cent efforts have turned to award-winning status as a more timely and 
expert-endorsed indicator. In many prestigious venues, novelty is ex-
plicitly listed as a key evaluation criterion for awards, making this proxy 
scientifically meaningful. Against this backdrop, the rapid advancement 
of artificial intelligence (AI) has profoundly transformed both industrial 
production and everyday life, positioning AI as a compelling domain 
for studying the dynamics of technological and scientific innovation. 
Due to the fast-paced evolution of AI, conferences have overtaken tra-
ditional journals as the primary venues for disseminating cutting-edge 
research. Consequently, in this study, we selected the proceedings of 
seven premier AI conferences–AAAI, ACL, NeurIPS, CVPR, ICCV, ICML 
and IJCAI–as our data sources. These conferences are internationally 
recognized as top-tier forums within the AI research community and 
are classified as Class A conferences by the China Computer Federa-
tion (CCF)1. In most editions, these conferences designate a subset of 
accepted papers as award-winning. Such selections are typically based 
on rigorous peer evaluation, with research novelty, originality, and po-
tential impact serving as core criteria in the decision-making process, 
making them a valuable benchmark for evaluating scientific novelty.

Our dataset includes all papers published in these seven conferences 
from 1996 to 2023. Table 1 presents the statistics for award-winning 
and non-award papers over this period. Paper titles were obtained from 
the DBLP computer science bibliography database2, and we also col-
lected the corresponding abstracts. The control sample was constructed 
in two steps. First, for each award-winning paper, we randomly selected 
four non-award papers from the same conference and publication year, 
provided that their abstracts were available. Restricting the selection 
to the same venue and year helps mitigate potential confounding effects

1 https://www.ccf.org.cn/Academic_Evaluation/By_category/
2 https://dblp.org/
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Table 2 
Descriptive statistical analysis of award-winning and non-award papers.

Conf. Metrics
 Reference Count  Citation Count  Influential Citation Count
 Non-award  Award-winning  Non-award  Award-winning  Non-award  Award-winning

AAAI

 Mean  22.37  26.22  53.55  241.83  4.85  23.39
 Max  107  70  751  3103  108  458
 Min  2  6  0  2  0  0
 Median  20  21  20  56  1  5
 Std  15.45  16.03  96.11  540.40  12.19  72.98

ACL

 Mean  31.23  35.57  81.17  352.46  9.44  33.91
 Max  119  133  808  3414  119  272
 Min  3  11  0  9  0  0
 Median  28  29  33  168  2  13
 Std  19.20  23.71  136.69  622.70  20.34  58.84

CVPR

 Mean  31.44  51.08  114.24  9220.69  11.49  1386
 Max  142  154  1053  179,774  188  28678
 Min  5  5  0  11  0  2
 Median  29  45  37.5  402.5  2.5  58
 Std  18.37  35.68  187.67  35420.52  25.86  5633.14

ICCV

 Mean  29.59  48  176.76  2751.05  11.83  393.15
 Max  93  120  2668  25,132  165  3793
 Min  2  19  0  3  0  0
 Median  25.5  40  38.5  408.5  2  25
 Std  17.73  26.89  398.90  6526.48  25.92  1003.76

ICML

 Mean  40.45  50.05  184.91  500.13  17.76  64.44
 Max  105  103  9761  3500  770  439
 Min  11  14  0  0  0  0
 Median  37.5  48  35  107  3  11
 Std  21.44  23.67  810.38  900.97  65.82  121.05

IJCAI

 Mean  28.63  31.33  43.01  83.28  4.08  7.39
 Max  107  91  648  492  146  76
 Min  2  6  0  0  0  0
 Median  26  29  15  43  1  2
 Std  16.90  18.40  96.76  106.62  14.81  14.14

NeurIPS

 Mean  47.28  65.11  66.24  1344.55  7.72  165.32
 Max  100  168  589  34,537  116  3817
 Min  16  20  0  10  0  1
 Median  44  62.5  31  129  3  15.5
 Std  19.53  35.22  97.41  5627.60  15.11  631.81

Total

 Mean  33.36  43.3  97.84  1652.35  9.42  233.06
 Max  142  168  9761  179,774  770  28678
 Min  2  5  0  0  0  0
 Median  29  36  28  125  2  11
 Std  20.19  28.84  374.52  12213.67  32.43  1919.55

arising from shifts in research focus or changes in peer-review standards 
over time. Second, we balanced statistical power with practical feasibil-
ity in determining the control group size. Using only one or two non-
award papers per award-winning paper may lead to insufficient vari-
ance and reduce estimation precision. Conversely, using too many con-
trols may introduce imbalance between the treatment (award-winning) 
and control groups, undermining comparability. Drawing on established 
practices in matched control study designs, we adopted a 1:4 matching 
ratio to ensure an appropriate level of representativeness without intro-
ducing excessive imbalance between the award and control groups. To 
evaluate the robustness of this choice, we conducted sensitivity analy-
ses by varying the number of control papers per award-winning paper 
from 1:1 to 6:1. The results remained largely consistent across different 
ratios, suggesting that the model’s performance is stable and not sub-
stantially affected by the matching ratio. Further experimental details 
and comparative results are reported in subsection 5.1.

Based on the collected paper titles, we constructed the final dataset 
for empirical analysis through the following steps. First, We utilized the 
Semantic Scholar API3 to retrieve key metadata for each paper, includ-
ing the fields: “paper_id”, “title”, “abstract”, “year”, “referenceCount”, 

3 https://www.semanticscholar.org/product/api

“citationCount”, “influentialCitationCount”, and “fieldsOfStudy”. All 
papers, along with their references, were stored in csv format for further 
processing. Among these fields, influentialCitationCount represents the 
number of Highly Influential Citations, which refer to citations where 
the cited publication has a significant impact on the citing publication. 
Although it is not possible to rule out cases where certain non-award 
papers exhibit a high degree of novelty or where some award-winning 
papers demonstrate relatively low novelty, overall, award-winning pa-
pers tend to exhibit a higher degree of novelty compared to non-award 
papers presented at the same conference in the same year (Runhui et al., 
2025).

To further compare the characteristics of award-winning and non-
award papers, we conducted a descriptive statistical analysis of their 
reference counts, citation counts and influential citation counts. The 
summary statistics are presented in Table 2. Key observations include:

• Reference count: The statistical results indicate that award-winning 
papers exhibit slightly higher mean, median, maximum, and mini-
mum reference counts compared to non-award papers. This suggests 
that award-winning papers tend to draw upon a broader and more 
diverse knowledge base. However, the standard deviation of refer-
ence counts is relatively large for award-winning papers, indicating 
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greater variability in the number of references among them com-
pared to non-award papers.

• Citation count: In terms of citation impact, award-winning papers 
demonstrate significantly higher mean, maximum, and median cita-
tion counts than non-award papers. This trend aligns with the gen-
eral expectation that award-winning papers tend to receive greater 
academic recognition, reflecting their higher scholarly influence. 
The relatively large standard deviation and the presence of low min-
imum values warrant attention, as they suggest that while most 
award-winning papers are widely cited, some receive considerably 
fewer citations, even approaching the citation levels of non-award 
papers.

• Influential citation count: When assessing the impact of papers 
on subsequent research, award-winning papers exhibit substantially 
higher mean, median, and maximum influential citation counts com-
pared to non-award papers. This further supports the notion that 
award-winning papers are more likely to be highly innovative and 
serve as foundational research within their respective fields. How-
ever, similar to the citation count, the large standard deviation in 
influential citation counts suggests that while some award-winning 
papers achieve groundbreaking influence and become pivotal refer-
ences for future studies, others have a more limited impact within 
the academic community.

4.2.  Experimental design

We conducted six experiments on the aforementioned datasets to 
evaluate the effectiveness, interpretability and robustness of our pro-
posed method and to analyze and compare the characteristics of award-
winning and non-award papers. The experiments are outlined as follows:

• To evaluate the robustness and reliability of our model across dif-
ferent control group sizes, we conducted sensitivity analysis by al-
tering the control-to-treatment ratio and tracking variations in key 
performance metrics such as AUC, accuracy, precision, recall, and 
F1-score.

• To comprehensively assess the effectiveness and robustness of our 
approach, we conducted comparative evaluations against baseline 
models and analyzed the sources of performance differences, statis-
tical significance tests to verify whether our novelty metric mean-
ingfully distinguishes award-winning papers, and robustness checks 
on the aggregation method using Tukey’s HSD Test to evaluate the 
impact of potential outliers.

• To further verify the effectiveness of each module, particularly the 
knowledge propagation module, we performed an ablation study by 
systematically removing or replacing specific components and ana-
lyzing the resulting changes in performance.

• To explore and compare the characteristics of award-winning and 
non-award papers, we conducted an analysis focusing on: (1) the 
distribution characteristics of knowledge and knowledge combina-
tions in award-winning and non-award papers. (2) the distribution 
characteristics of knowledge combination similarity and novelty in 
award-winning and non-award papers.

• To evaluate the interpretability of the proposed combinatorial nov-
elty, we conducted a small-scale qualitative case study assessing both 
award-winning and non-award papers.

• To evaluate the generalizability of the proposed method beyond the 
AI domain, we conducted a cross-field validation using data from the 
biomedical engineering domain.

4.3.  Evaluation metrics

This study employs the ROC curve to evaluate the predictive perfor-
mance of various metrics. The ROC curve is a widely used performance 
evaluation method for tasks involving quantification, particularly adept 
at assessing a model’s discriminative capacity across varying decision 

thresholds. Its fundamental concept involves adjusting the classification 
threshold to compute the true positive rate (TPR) and false positive rate 
(FPR) at each level, subsequently plotting their relationship to evaluate 
the model’s overall discriminatory prowess. Specifically, the formulas 
for TPR and FPR are as follows:

TPR = TP
TP + FN

(15)

FPR = FP
FP + TN

(16)

where, TP (True Positives) denotes the number of positive instances cor-
rectly identified, while FP (False Positives) represents the number of 
negative instances incorrectly classified as positive. TN (True Negatives) 
refers to the number of negative instances accurately identified, and FN 
(False Negatives) indicates the number of positive instances mistakenly 
classified as negative. The Area Under the ROC Curve (AUC) serves as a 
comprehensive metric for evaluating the model’s performance. A higher 
AUC indicates stronger discriminative power. Specifically, an AUC of 0.5 
suggests that the model’s performance is equivalent to random guessing. 
AUC values within the range of 0.5 to 0.6 are considered poor, while 
those between 0.6 and 0.7 are classified as fair. AUC scores ranging from 
0.7 to 0.8 indicate good performance, whereas values between 0.8 and 
0.9 are deemed excellent. An AUC greater than 0.9 signifies outstanding 
classification capability, with an AUC of 1.0 representing a perfect classi-
fier (Luo et al., 2024; Mandrekar, 2010). Following the identification of 
the optimal threshold through ROC curve analysis, we further evaluate 
the classification performance using macro-averaged precision, recall, 
and f1-score. Unlike micro-averaging, which aggregates contributions 
from all classes and may be dominated by the majority class, macro-
averaging computes metrics independently for each class and takes their 
unweighted mean. This approach is particularly suitable under class im-
balance, as it ensures a more balanced and equitable assessment across 
categories. The corresponding formulas are presented below:

Macro-Precision = 1
𝐶

𝐶
∑

𝑖=1

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

(17)

Macro-Recall = 1
𝐶

𝐶
∑

𝑖=1

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

(18)

Macro-F1 = 1
𝐶

𝐶
∑

𝑖=1

2 ⋅ 𝑃𝑖 ⋅ 𝑅𝑖
𝑃𝑖 + 𝑅𝑖

(19)

4.4.  Baseline methods

To evaluate the performance of our method, we compare our model 
with a series of state-of-the-art models, including the ED𝑠 described 
in Wang et al. (2023), as well as Novel𝑇  and Novel𝐴 proposed by 
Shibayama et al. (2021), and other methods proposed by Uzzi et al. 
(2013), Lee et al. (2015), Foster et al. (2015), Savov et al. (2020), Jeon 
et al. (2023) and Wang et al. (2017b). Among these baselines, ED𝑠, 
Novel𝑇 , Novel𝐴, Savov et al. (2020), and the method proposed by Jeon 
et al. (2023) are content-based approaches, which rely on the content of 
publications to assess novelty. In contrast, Uzzi et al. (2013), Lee et al. 
(2015), Foster et al. (2015), and Wang et al. (2017b) are reference-based 
approaches, focusing on combination patterns of the journals to which 
the references in the focal paper belong.

5.  Results and discussions

In this section, we first perform a sensitivity analysis by varying the 
control-to-treatment ratio from 1:1 to 6:1 to assess the robustness of our 
findings with respect to the number of matched non-award papers. Sub-
sequently, we compare the performance of our proposed method with 
ten state-of-the-art baselines, conduct an in-depth analysis of the factors 
contributing to underperformance in several baselines, and, to further 
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Fig. 6. Results of sensitivity analysis on matching ratios.

evaluate the effectiveness of the proposed novelty metric, perform sta-
tistical significance tests, including Tukey’s Honest Significant Differ-
ence (HSD) test.  Then, we conduct ablation experiments to assess the 
contribution of each module in our approach. Finally, we analyze and 
compare the distribution characteristics of knowledge in award-winning 
and non-award papers, including the quantity of knowledge, the num-
ber of knowledge combinations as well as the distribution characteristics 
of similarity and novelty. Furthermore, we conduct a more comprehen-
sive analysis of the limited instances of unexpected novelty distribution 
observed in non-award papers.

5.1.  Sensitivity analysis on the number of control papers

To evaluate the robustness of our findings with respect to the num-
ber of matched non-award papers, we conducted sensitivity analyses by 
varying the control-to-treatment ratio from 1:1 to 6:1. In addition to the 
evaluation metrics introduced in Section 4.3, we also assessed the ac-
curacy, defined in Eq. 20, to comprehensively evaluate robustness. For 
each setting, non-award papers were drawn from the same conference 
and year as their award-winning counterparts, and all analyses followed 
the same procedures as in our main experiments. The model perfor-
mance under varying control-to-treatment ratios is presented in Fig. 6. 
From Fig. 6, AUC remains essentially unchanged across matching ratios 
(hovering around 0.82), underscoring the model’s stable discriminative 
power regardless of control-group size. Accuracy increases from 0.781 
at a 1:1 ratio to 0.863 at 1:4, beyond which it plateaus (0.863 at 1:5 
and 0.870 at 1:6). This suggests that increasing the number of controls 
up to four per award paper significantly improves overall performance, 
while further expansion yields only marginal benefits. Precision remains 
relatively stable at lower ratios but declines to 0.760 at 1:5 and 0.749 
at 1:6, indicating that large control groups may introduce more false 
positives. Recall remains relatively stable as well, ranging from 0.781 
(1:1) to 0.775 (1:4), before dropping slightly to 0.757 at both 1:5 and 
1:6. The f1-score peaks at 0.790 at a 1:3 ratio, then gradually decreases 
to 0.782 (1:4), 0.759 (1:5) and 0.753 (1:6). These modest variations 
suggest that both recall and f1-score are only minimally affected by the 
matching ratio. Overall, aside from a slight precision decline at higher 

ratios, the other metrics show only minor fluctuations, indicating that 
model performance is largely robust to changes in control-group size. 
The 1:4 ratio, in particular, maintains strong performance across AUC, 
accuracy, recall, and f1-score, while avoiding a drop in precision, mak-
ing it a balanced and reliable choice. Accordingly, we adopt the 1:4 ratio 
for all subsequent analyses in this study.

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(20)

5.2.  Model comparison

Fig. 7 presents the ROC curves of various baseline models in dis-
tinguishing between award-winning and non-award papers. The curves 
reveal notable variations in model performance. Among them, our pro-
posed approach achieves the highest AUC of 0.826, outperforming all 
other baselines and demonstrating its effectiveness in quantifying nov-
elty for identifying award-winning papers. In contrast, 𝑁𝑜𝑣𝑒𝑙𝑇  yields 
the lowest AUC of just 0.49, highlighting the limitations of relying 
solely on paper titles for novelty detection. Moreover, the ROC trends 
indicate that our method achieves a relatively high true positive rate 
(TPR) in the low false positive rate (FPR) region, effectively captur-
ing award-winning papers with minimal false alarms. Other models 
exhibit a more gradual increase in TPR. While Savov’s model attains 
a slightly higher TPR in the high-FPR region, suggesting its ability to 
identify more award-winning papers at the cost of increased false pos-
itives, our method maintains a clear overall advantage. Despite this 
localized improvement, Savov’s model records a lower overall AUC, 
reinforcing the superior robustness and effectiveness of our approach 
across the entire evaluation spectrum. Based on the optimal threshold 
derived from ROC curve analysis, we further computed macro-averaged 
precision, recall, and f1-Score for each method, as summarized in
Table 3. The proposed hybrid methods consistently outperform tra-
ditional content-based and reference-based baselines. Among differ-
ent configurations, methods using prompt-1 (P1) generally outper-
form those employing prompt-2 (P2). Furthermore, regarding language 
model choice, approaches leveraging GPT-4o for knowledge extraction 
surpass those based on OLMo2:13b. For knowledge representation, mod-
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Fig. 7. ROC curves of various baseline models.

Table 3 
Evaluation results of different measures.
 Category  Metrics  Macro Precision  Macro Recall  Macro F1-Score

Content-based Methods

ED𝑠 (Wang et al., 2023)  0.5938  0.6240  0.5981
 FastText+LOF (Jeon et al., 2023)  0.5209  0.5105  0.5011
 FastText+IF (Jeon et al., 2023)  0.5263  0.5258  0.5261
Novel𝑇  (Shibayama et al., 2021)  0.5231  0.5110  0.5006
Novel𝐴 (Shibayama et al., 2021)  0.5181  0.5200  0.5184
Savov et al. (2020)  0.5232  0.5301  0.5199

Reference-based Methods
Wang et al. (2017b)  0.5291  0.5269  0.5276
Foster et al. (2015)  0.5834  0.5666  0.5716
Lee et al. (2015)  0.7274  0.6798  0.6976
Uzzi et al. (2013)  0.5156  0.5106  0.5072

Hybrid Methods

 P1 + GPT-4o + SciDeBERTa-cs ⋆  0.7883  0.7753  0.7815
 P2 + GPT-4o + SciDeBERTa-cs  0.7053  0.6857  0.6943
 P1 + GPT-4o + SciBERT  0.7444  0.7764  0.7579
 P2 + GPT-4o + SciBERT  0.6733  0.7205  0.6873
 P1 + OLMo2:13b + SciDeBERTa-cs  0.7288  0.6925  0.7072
 P2 + OLMo2:13b + SciDeBERTa-cs  0.6815  0.6514  0.6631

⋆ indicates our main method, which uses prompt-1, GPT-4o and SciDeBERTa(CS) as the default configuration. 
The detailed prompt-1 (P1) and prompt-2 (P2) are provided in Appendix A.

els incorporating SciDeBERTa-cs yield better performance than those us-
ing SciBERT. Notably, the combination of P1 + GPT-4o + SciDeBERTa-
cs achieves the highest macro-averaged f1-score of 0.7815, underscor-
ing the benefits of leveraging a more powerful large language model 
for knowledge extraction and a domain-adaptive language model for 
knowledge representation initialization. These results suggest that both 
model selection and prompt design play critical roles in enhancing the 
performance of hybrid architectures for classification tasks.

To better understand the relatively poor performance of several base-
line methods, we conduct an in-depth analysis of their underlying de-
sign assumptions, representational granularity, and the characteristics 
of the evaluation dataset. Rather than attributing the suboptimal re-

sults solely to the dataset, we argue that these outcomes reflect inher-
ent methodological limitations when such approaches are applied to a 
domain-specific and topically homogeneous corpus.

For example, models such as Uzzi et al. (2013) and Wang et al. 
(2017a) rely on journal-level features to assess novelty. The method 
proposed by Uzzi et al. (2013) identifies novel papers based on rare 
journal co-citation patterns using a fixed global percentile, while Wang 
et al. (2017a) constructs vector representations of journals and quan-
tifies novelty through cumulative divergence in the reference journal 
space. While effective in large-scale, interdisciplinary corpora with di-
verse citation behaviors, these approaches are less suited to our dataset–
composed of top-tier AI conference papers–where referenced venues are 
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Table 4 
Significance testing of novelty differences between award-winning and non-award papers.

 t-test  Mann–Whitney U test
 Variable  Group  Mean  Std.  t  df  p  Mean Rank  U  Z  p

Novelty
 non-award  7.63  2.68 −16.49  277.50  <0.001  515.73  39088.5 −15.54  <0.001
 award-winning  12.75  4.59  902.07

highly concentrated and journal overlap across papers is substantial. 
This lack of diversity reduces the discriminative power of journal-level 
novelty signals and limits these models’ ability to identify genuinely 
novel contributions.

Similarly, methods such as FastText+LOF and FastText-IF (Jeon 
et al., 2023) also performed poorly. These approaches represent each 
paper using vectors derived solely from titles and apply anomaly detec-
tion techniques to identify outliers in the embedding space. However, 
paper titles–especially in AI–often use generic phrasing that fails to cap-
ture the conceptual specificity of the work. Additionally, the embed-
dings were trained on general-purpose corpora (e.g., Wikipedia), which 
inadequately reflect the nuanced semantics of scientific language in spe-
cialized domains. This mismatch likely contributed to the low expres-
siveness and poor separability of the resulting vectors.

Likewise, the Novel𝑇  and Novel𝐴 methods (Shibayama et al., 2021), 
which compute the average vector of the titles (T) or abstracts (A) of 
cited references, also suffer from coarse representational strategies. Such 
pooling techniques tend to overemphasize common functional words 
(e.g., “approach,” “result,” “method”) and underrepresent semantically 
distinctive content. In a domain like AI–where many papers share sim-
ilar lexical patterns–this leads to homogenized representations that ob-
scure meaningful novelty.

The topic-based method proposed by Savov et al. (2020) also faces 
structural limitations. It models novelty through divergence in topic 
distributions–a strategy that assumes topical shifts are the primary sig-
nal of novelty. However, the AI field exhibits a relatively stable the-
matic landscape over time, with enduring themes such as classifica-
tion, generation, and optimization. As a result, true novelty in this do-
main often stems from methodological advances within existing topical 
boundaries–a nuance that topic models are generally ill-equipped to de-
tect.

Interestingly, the ED𝑠 method (Wang et al., 2023), which measures 
novelty via the imbalance between new and inherited knowledge units, 
demonstrated comparatively better performance. This may be attributed 
to its finer-grained approach, which analyzes the presence or absence of 
specific knowledge elements in the focal paper relative to its references. 
Such knowledge-level representations appear more effective for captur-
ing localized novelty in specialized, non-interdisciplinary research do-
mains.

Taken together, these findings suggest that coarse-grained or gener-
alized models–while effective in broad, heterogeneous datasets–struggle 
to capture novelty in tightly focused, technically consistent domains. 
Approaches that leverage finer-grained representations or incorporate 
domain-specific mechanisms are likely to yield more reliable and mean-
ingful assessments of scientific novelty in such contexts.

To further assess the effectiveness of the proposed novelty metric 
generated by our model, we conducted statistical significance tests to 
evaluate whether the scores meaningfully differentiate between award-
winning and non-award papers. Before performing these tests, we ex-
amined the normality of the predicted novelty scores for both groups. 
The scores for award-winning papers passed the Shapiro-Wilk test (p > 
0.05), indicating normal distribution, while those for non-award papers 
showed a significant deviation from normality (p < 0.001). However, 
given the relatively large sample size of the non-award group (n = 948), 
the Central Limit Theorem justifies that the sampling distribution of the 
mean approximates normality. Visual diagnostics from SPSS, including 
histograms and normal Q-Q plots, further supported this assumption. 

In particular, the Q-Q plot for the non-award group (see Appendix B) 
showed that most points closely followed the diagonal line, with only 
minor deviations in the tails. To further ensure the robustness of our 
findings in light of the non-normal distribution in the non-award group, 
we supplemented Welch’s t-test with the non-parametric Mann-Whitney 
U test. As shown in Table 4, both tests yielded statistically significant 
results (p < 0.001), with award-winning papers exhibiting significantly 
higher novelty scores. These findings provide strong evidence for the 
discriminative validity of the proposed novelty metric.

Moreover, to assess the validity of summing pairwise knowledge nov-
elty scores, as proposed in Eq. 14, and determine whether the aggre-
gation is susceptible to outliers, we applied Tukey’s Honest Significant 
Difference (HSD) Test. Tukey’s Test is a statistical method used to iden-
tify significant differences between group means and to detect outliers 
in a dataset. In our study, we used this method to identify pairwise nov-
elty scores that significantly deviate from the others, indicating poten-
tial outliers. For each paper, we calculated the proportion of outliers 
among the pairwise novelty scores. The distribution of these propor-
tions is shown in Fig. 8, where the median is 0.00, indicating that most 
papers have negligible outlier proportions. The mean outlier proportion 
is 0.07, which reflects the slight influence of a few papers with higher 
outlier proportions. The Top 5% cutoff is 0.21, indicating that only the 
top 5% of papers have outlier proportions exceeding this threshold. Al-
most all outlier proportions were below 0.25, demonstrating that the 
vast majority of papers are not significantly affected by extreme values. 
This confirms that the aggregation method remains robust, as the nov-
elty metric is not disproportionately influenced by a small number of 
outliers. Additionally, all pairwise novelty values are normalized to the 
range [0, 1], which inherently limits the extent of any individual score’s 
influence, further ensuring the stability of the metric.

5.3.  Ablation experiment

To assess the contribution of each module to the overall performance 
of our model, we conducted two sets of ablation experiments. First, 
we evaluated the impact of removing the knowledge propagation mod-
ule on model performance. Based on this ablated variant, we further 
replaced SciDeBERTa(CS), a domain-specific language model trained 
on computer science literature, with the general-purpose BERT in the 
knowledge representation module to examine the performance gains 
provided by domain-specific language models. In addition to module-
level ablations, we also evaluated the model’s performance across dif-
ferent subsets of the dataset. Each subset corresponds to a top-tier AI 
conference, and this analysis aims to assess whether the model main-
tains consistent identification effectiveness across these conferences.

Table 5 presents the results of the ablation experiments and journal-
wise analysis. Here “only award” refers to evaluation metrics calculated 
solely for the award category (positive class), whereas “macro” accounts 
for both award (positive class) and non-award (negative class) categories 
by averaging the metrics across both classes. In the first ablation, re-
moving the knowledge propagation module led to a decrease in preci-
sion for the award category from 0.6682 to 0.5475, and a drop in F1-
score from 0.6478 to 0.6162. This indicates that the knowledge propa-
gation module plays a pivotal role in improving both precision and over-
all model performance. Although recall increased slightly from 0.6287 
to 0.7046, the gain was insufficient to compensate for the decline in 
precision. Additionally, macro precision and macro f1-score decreased 
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Fig. 8. Distribution of outlier ratios across papers.

Table 5 
Performance evaluation results from the ablation study and journal-wise anal-
ysis.

 only award  macro
 Precision  Recall  F1-Score  Precision  Recall  F1-Score

 Full Model  0.6682  0.6287  0.6478  0.7883 0.7753  0.7815
 w/o knowledge propagation 0.5475  0.7046 0.6162 0.7340  0.7795 0.7512
 SciDeBERTa-cs → Bert  0.5093 0.6962  0.5882  0.7128  0.7642  0.7303
 AAAI  0.7273  0.5854 0.6486  0.8142  0.7652 0.7856
 ACL 0.6750  0.7714  0.7200 0.8079  0.8393  0.8218
 CVPR  0.5405  0.7692  0.6349  0.7380 0.8029  0.7591
 ICCV  0.4186  0.9000  0.5714  0.6918  0.7938  0.6872
 ICML  0.4198 0.8293  0.5574  0.6817  0.7713  0.6849
 IJCAI  0.5088  0.8056  0.6237  0.7259 0.8056  0.7463
 NeurIPS  0.5263  0.7895  0.6316  0.7331 0.8059  0.7544

by approximately 0.0543 and 0.0303, respectively, suggesting that the 
knowledge propagation module contributes not only to the prediction 
of award-winning papers but also to balanced classification across both 
categories.

In the second ablation, replacing the domain-specific SciDe-
BERTa(CS) with the general-purpose BERT in the knowledge represen-
tation module resulted in a substantial drop in precision, recall, and 
f1-score for the award category, falling to 0.5093, 0.6962, and 0.5882, 
respectively. This finding highlights the superiority of SciDeBERTa(CS) 
over general-purpose language models in capturing domain-specific se-
mantic representations, particularly in the computer science fields. Ad-
ditionally, the macro precision and macro f1-score also declined by ap-
proximately 0.02, further reinforcing the importance of domain-specific 
language models in enhancing overall performance.

Third, beyond the aforementioned module-level ablation studies, we 
conducted a subgroup analysis to further evaluate the robustness of the 
proposed model across different top-tier AI conferences. This analysis 
aimed to determine whether the model maintains consistent effective-
ness when applied to different distributions of scientific literature. In 
addition to the numerical results summarized in Table 5, we further 
provide a visualization of the performance variation across conferences 
in Fig. 9. Notably, under both “only award” and “macro” metrics, re-

call consistently remains relatively high and exceeds precision across all 
subgroups, except for the AAAI conference, where precision slightly sur-
passes recall. This pattern suggests that the model demonstrates strong 
sensitivity in identifying potentially innovative papers. However, this 
heightened sensitivity is accompanied by a tendency to assign high 
novelty scores to some non-award papers, a trade-off that is more pro-
nounced under the “only award” setting. In contrast, the “macro” met-
rics yields more balanced performance. Importantly, the consistency of 
these trends across conferences indicates that the model maintains sta-
ble performance across diverse conferences.

In summary, all modules contribute meaningfully to the model’s 
effectiveness: the knowledge propagation module enhances prediction 
accuracy, while the domain-specific knowledge representation module 
improves semantic understanding in specialized domains. Furthermore, 
the model demonstrates robust and consistent performance across dif-
ferent conference subgroups, thereby validating rationality and effec-
tiveness of the proposed modular architecture.

5.4.  Analysis and comparison of the characteristics of award-winning and 
non-award papers

5.4.1.  Statistical distribution of knowledge and knowledge combinations
To further analyze the differences in the statistical distribution of 

knowledge and knowledge combinations between award-winning and 
non-award paper, as well as to characterize their distributional differ-
ences, we performed a statistical comparison of the number of knowl-
edge extracted through Section 3.1 and the number of knowledge com-
binations identified via Section 3.2. As illustrated in Fig. 10, the figure 
presents the distributional differences in the number of knowledge and 
knowledge pairs between award-winning and non-award papers.

We first examine the distribution of knowledge count in award-
winning and non-award papers. Here, Knowledge count refers to the 
number of distinct knowledge units addressed in a paper, which reflects 
the breadth of the study. This measure represents the extent of coverage 
of existing knowledge and the richness of the theoretical background. 
As shown in the violin plots, award-winning papers (red) exhibit signifi-
cantly higher knowledge counts than non-award papers (blue), with dif-
ferences evident across multiple distributional aspects. First, the median 
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Fig. 9. Visualization of metric variations across journals.

Fig. 10. Distribution of knowledge and knowledge pairs: non-award vs. award-winning papers.

knowledge count is notably higher in award-winning papers, suggest-
ing that these works typically incorporate a broader range of indepen-
dent knowledge units. Second, the distribution of knowledge counts in 
award-winning papers is more balanced and displays an extended upper 
tail, whereas that of non-award papers is skewed toward lower values, 
with few instances of high knowledge counts. The probability density 
curves further reveal that non-award papers exhibit a pronounced peak 
in the low knowledge count range (blue dashed line), reflecting a rel-

atively limited coverage of knowledge in most cases. Conversely, the 
density curve for award-winning papers (red dashed line) is flatter and 
possesses a significantly longer tail, indicating that a majority of award-
winning papers include a large number of knowledge units, suggesting a 
richer and more diverse knowledge framework and potentially broader 
research domains.

Papers with a higher knowledge count typically indicate that they 
address research questions by involving multiple related fields and may 
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even integrate knowledge from different disciplines. This multidisci-
plinary integration renders the research content more comprehensive 
and robust, thereby facilitating deeper exploration based on existing 
knowledge. In contrast, papers with a lower knowledge count tend to 
focus on a specific issue within a relatively narrow knowledge scope, 
which may restrict the overall breadth of the study and subsequently 
influence the paper’s overall academic novelty.

The above findings demonstrate that award-winning papers gener-
ally contain a higher number of knowledge units with a broader distri-
bution, whereas non-award papers exhibit relatively fewer knowledge 
units, with their distribution concentrated in the lower range. The quan-
tity of knowledge incorporated in a paper may influence its novelty 
level, as a higher knowledge count potentially provides stronger theo-
retical support, a richer research background, and even a higher degree 
of interdisciplinary integration.

We next analyze the distributional characteristics of knowledge pair 
counts. Knowledge pair count denotes the number of associations forged 
among distinct knowledge units within a paper. This metric not only re-
flects the depth of the investigation but also the extent of interconnec-
tion among its constituent knowledge. Analysis of the violin plots reveals 
that although the overall range (i.e., maximum and minimum values) of 
knowledge pair counts for award-winning and non-award papers is rel-
atively similar, the distribution in award-winning works demonstrates 
a pronounced superiority.

In particular, the median knowledge pair count in award-winning pa-
pers is markedly higher than that observed in non-award counterparts. 
This finding suggests that such papers not only reference a greater ar-
ray of knowledge but also explore their interrelations more thoroughly, 
thereby cultivating more intricate knowledge networks. Furthermore, 
a careful inspection of the violin plot widths indicates that the knowl-
edge pair counts in award-winning papers are predominantly situated 
in the higher range, whereas those in non-award papers are largely con-
fined to the mid to lower echelons, with extreme values appearing less 
frequently. The corresponding probability density curves further reveal 
that non-award papers exhibit a pronounced peak at the lower end, sig-
nifying a limited degree of knowledge integration. In contrast, the den-
sity curve for award-winning papers is flatter with an elongated tail, 
suggesting that certain award-winning works achieve a highly complex 
and tightly interwoven knowledge structure.

In summary, the probability density curves imply that non-award pa-
pers tend to combine relatively few knowledge, indicative of a weaker 
interconnection and a lack of deep integration. Conversely, the flatter 
density curve and extended tail characteristic of award-winning papers 
reflect significantly higher knowledge pair counts, emblematic of more 
sophisticated integration and the potential emergence of tightly inter-
connected knowledge networks. This comparative analysis of knowl-
edge units and knowledge pairs intimates that award-winning papers 
not only encompass a greater number of knowledge units but also

Fig. 11. The heatmap of similarity and novelty distributions of award-winning and non-award papers.
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exhibit richer interrelationships among them. Such comprehensive 
knowledge associations may pave the way for breakthroughs in theo-
retical contributions and academic novelty, as novel insights often arise 
from the recombination and profound synthesis of existing knowledge. 
In contrast, the relatively knowledge pair counts in non-award papers 
suggest a tendency to remain entrenched in established paradigms, with 
insufficient cross-disciplinary integration, which may, in turn, limit their 
overall novelty and scholarly impact.

5.4.2.  Characteristics of knowledge combination novelty: award-winning vs 
non-award papers

To compare the distributional characteristics of knowledge combi-
nation novelty between award-winning and non-award papers, we con-
structed heatmaps illustrating their similarity and novelty distributions 
of knowledge combinations, as shown in Fig. 11. In these heatmaps, each 
vertical column represents a paper, each horizontal row corresponds to 
a specific similarity or novelty value, and each small cell denotes the 
count of knowledge combinations within the paper that exhibit a given 
similarity or novelty value. The darker the color, the greater the num-
ber of knowledge combinations with that particular similarity or nov-
elty value. In terms of distribution range, the similarity scores of award-
winning papers are primarily concentrated between −0.4 and 0.2, while 
their novelty scores are predominantly distributed between 0.5 and 0.8.

From the color intensity distribution depicted in Fig. 11(a), it is evi-
dent that the similarity scores of intra-paper knowledge combinations in 
award-winning papers are predominantly concentrated within the range 
of -0.4 to 0.2, forming a high-frequency interval. This observation in-
dicates that most of the knowledge combinations within these papers 
demonstrate relatively low similarity. Such heterogeneity enhances the 
overall novelty of the paper, reflecting a higher level of originality. In 
contrast, the color distribution in Fig. 11(b) appears lighter. Although 
some non-award papers include knowledge combinations with low sim-
ilarity, the overall distribution is more dispersed and uniform, without a 
distinct high-frequency interval. This observation suggests that the sim-
ilarity scores of knowledge combinations in non-award papers are more 
evenly distributed. While some combinations exhibit low similarity, a 
substantial proportion reveals relatively high similarity, implying that 
the novel contributions of these papers are primarily reflected in incre-
mental improvements or applications rather than radical breakthroughs 
(Veugelers & Wang, 2019). This pattern is further reflected in Fig. 11(c) 
and (d), where the color intensity in the high-frequency region of the 
novelty score is noticeably deeper for award-winning papers compared 
to non-award papers, particularly within the range of 0.5 to 0.8. Over-
all, most knowledge combinations in award-winning papers exhibit sig-
nificant heterogeneity, as evidenced by their relatively low similarity 
scores. This may indicate that these papers contain a larger number of 
highly novel knowledge combinations. Conversely, the similarity distri-
bution in non-award papers is more balanced, potentially indicating that 
these works contribute to various fields through incremental advance-
ments, albeit without achieving substantial radical breakthroughs.

In Fig. 11, we observe that a small subset of non-award papers ex-
hibits a lower similarity distribution in their knowledge combinations, 
with cells in the lower similarity score range appearing darker. To facil-
itate a more comprehensive analysis of this unexpected non-award nov-
elty distribution, we selected non-award papers characterized by low 
similarity, and analyzed these unexpected distribution features, as pre-
sented in Table 6.

Table 6 presents the distribution of knowledge combination similar-
ity for non-award papers with lower similarity scores and higher novelty 
scores. We ranked the papers based on novelty and median of similar-
ity and selected the top 20 non-award papers, analyzing their statistical 
characteristics in terms of knowledge combination similarity, citation 
impact, and novelty. The results indicate that these papers exhibit con-
sistently lower similarity(median), and similarity(average) compared to 
the typical non-award papers, suggesting a greater degree of novelty in 
their research content and methodology. Despite not receiving awards, 

Table 6 
Top 20 non-award papers by novelty and similarity (median).
Paper
Index

Similarity
(Median)

Similarity
(Average)

Combination
Number

Influential
Citation Count

Citation
Count

Paper
Novelty

 532 -0.0547  0.0137  45  27  440  22.1919
 482 -0.0779  0.0055  41  188  926  20.3876
 632 -0.1174 -0.0192  39  15  571  19.8749
 554 -0.0983 -0.0051  37  67  1345  18.5951
 678 -0.0884  0.1101  40  69  1168  17.7990
 717 -0.1299  0.0276  36  69  341  17.5033
 550 -0.1441 -0.0217  34  165  2668  17.3683
 319  0.0051  0.1252  39  85  374  17.0583
 1040 -0.1083  0.0384  35  116  575  16.8279
 649 -0.1042 -0.0161  33  172  1046  16.7650
 386 -0.1174  0.0692  36  1  15  16.7548
 336 -0.0559  0.0813  34  48  279  15.6172
 703 -0.1365  0.0468  32  54  416  15.2517
 623 -0.1649  0.0772  33  86  757  15.2266
 311 -0.1511 -0.0124  30  110  674  15.1861
 624  0.0491  0.1599  36  65  667  15.1222
 263  0.0212  0.1360  35  58  300  15.1207
 589 -0.1758 -0.0047  30  32  287  15.0700
 911 -0.0207  0.0885  33  146  640  15.0390
 626 -0.2388 -0.0700  28  26  352  14.9800

many of these papers still garnered substantial total citation counts and 
influential citations, demonstrating their academic impact. For instance, 
the paper indexed as 532 received 27 highly influential citations and a 
total of 440 citations, indicating that although it did not win an award, 
it has been widely recognized within the research community over time. 
The case of paper 532 is not an isolated one. This compelling paradox, 
where papers demonstrate high novelty and achieve significant long-
term impact without receiving formal awards, is not a random occur-
rence. It points to specific, systematic mechanisms within the academic 
evaluation process. To reveal these underlying mechanisms, we con-
ducted a deeper analysis of the representative cases from Table 6, inter-
preting them through the lens of established well-known theories and 
research findings. Our analysis suggests that a combination of cognitive 
and temporal mechanisms contributes to this discrepancy.

1. A paper’s success in the award selection process is shaped not only 
by its inherent novelty, but also by the alignment between its con-
tribution type and the prevailing evaluation focus of the venue. A 
lack of such alignment can lead to undervaluation, particularly for 
papers whose primary contribution lies in foundational theory or in 
directions not yet recognized as central to the field. A representa-
tive example is Paper 532, "Robust Principal Component Analysis 
for Computer Vision," published at the International Conference on 
Computer Vision (ICCV), a conference that historically emphasizes 
empirical advances in vision-related tasks. The paper proposed Ro-
bust PCA (RPCA) to address critical limitations of traditional PCA 
in the presence of outliers. Although its contribution is a fundamen-
tal advancement in statistics and machine learning, its research di-
rection may have been perceived by a specialized computer vision 
award committee as less compelling than papers presenting state-of-
the-art results on a canonical visual task. 

2. Another key mechanism concerns the temporal disconnect between 
point-in-time evaluations and the unfolding of long-term scholarly 
influence. Award decisions are, by nature, a snapshot prediction of 
future importance made by a small committee under tight deadlines. 
This process is inherently better at recognizing work with immedi-
ately apparent utility or applications. In contrast, foundational or 
pioneering ideas may require time to diffuse before their signifi-
cance is broadly recognized–a dynamic captured by the "Sleeping 
Beauty" phenomenon (van Raan, 2004). This is exemplified by Paper 
554, “Recognizing Action at a Distance,” which received no formal 
recognition at the time of publication. However, as interest in ac-
tion understanding and long-range video modeling grew, the paper’s
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Table 7 
Novelty and knowledge combination of sample papers.
 Awarded  Title Knowledge Combination(Top 10 by novelty)
 Yes  Densely Connected Convolutional Networks 0.72(benchmark tasks, vanishing-gradient problem); 0.68(convolutional 

networks, feature propagation); 0.67(benchmark tasks, feature-maps); 
0.65(DenseNet, benchmark tasks); 0.64(DenseNet, connections); 0.64(Dense 
Convolutional Network, convolutional networks); 0.64(connections, 
convolutional networks); 0.63(convolutional networks, feature-maps); 
0.63(benchmark tasks, feature reuse)

 Yes  Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting 0.56(Long sequence time-series forecasting, memory usage); 0.53(Informer, 
Transformer); 0.52(Long sequence time-series forecasting, prediction 
capacity); 0.52(Long sequence time-series forecasting, time complexity); 
0.52 (Transformer, self-attention distilling); 0.51(Transformer, inference 
speed); 0.51(Transformer, memory usage); 0.51(Transformer, memory 
usage); 0.50(Transformer, prediction capacity); 0.50(Transformer, 
generative style decoder); 0.49(ProbSparse self-attention, Transformer)

 No  Anytime Approximate Modal Reasoning 0.53(anytime proof procedure, approximation method); 
0.47(approximation method, credulous approximations); 
0.46(approximation method, multi-modal logics); 0.44(approximation 
method, classical modal tableaux); 0.41(approximation method, unbounded 
logical introspection); 0.30(approximation method, unbounded logical 
omniscience); 0.11(unbounded logical introspection, unbounded logical 
omniscience); 0.09(credulous approximations, unbounded logical 
omniscience); 0.07(multi-modal logics, unbounded logical omniscience); 
0.06(classical modal tableaux, quality guarantees);

 No  Anonymization for Skeleton Action Recognition 0.64(machine learning, security/privacy); 0.30(hyperparameter relaxations, 
protection mechanisms); 0.28(differentially private training, 
hyperparameter relaxations); 0.24(model and data ownership verification, 
robustness against model evasion); 0.22(conflicting interactions, model and 
data ownership verification); 0.17(model and data ownership verification, 
protection mechanisms); 0.13(differentially private training, robustness 
against model evasion); 0.10(conflicting interactions, differentially private 
training); 0.06(differentially private training, model and data ownership 
verification); 0.06(differentially private training, protection mechanisms)

relevance became increasingly apparent, leading to a substantial 
surge in citations several years later–ultimately exceeding 1,300. 
This case illustrates how long-term community validation can di-
verge markedly from initial judgments, highlighting a structural 
blind spot in the temporal scope of novelty evaluation. 

5.5.  Case study

To explore whether the proposed combinatorial-novelty score is in-
terpretable to humans and consistent with expert judgements of origi-
nality, we performed a small-scale qualitative assessment. From the ex-
perimental dataset, we randomly drew four sample papers, stratified 
by prize status: two award-winning papers and two non-award papers. 
For each paper, we extracted the top 10 knowledge-unit pairs based on 

their novelty scores, displaying only the highest-ranking combinations 
according to novelty, as shown in Table 7. The first element of every 
tuple represents the novelty score, and the bracketed pair lists the two 
knowledge whose co-occurrence is being evaluated.

Densely Connected Convolutional Networks is widely recognized 
for three key innovations: (1) introducing a dense connectivity pat-
tern where each layer connects to all previous layers, (2) alleviat-
ing the vanishing-gradient problem through improved gradient flow, 
and (3) enabling systematic feature reuse across the network. Our 
novelty assessment reflects these contributions through several high-
scoring knowledge combinations. The pair (benchmark tasks, vanishing-
gradient problem, 0.72) captures the paper’s explicit link between 
training stability and evaluation performance. (Convolutional networks, 
feature propagation, 0.68) corresponds to DenseNet’s emphasis on

Table 8 
Conferences and the number of award-winning and non-award papers.
Conference
Abbreviation

Conference
Full Name

Award-Winning
Papers Count

Non-Award
Papers Count

 MICCAI  Medical Image Computing and Computer-Assisted Intervention  20  1798
 ISBI  International Symposium on Biomedical Imaging  18  3411
 MLMI  Machine Learning in Medical Imaging  14  166
 BHI  IEEE-EMBS International Conference on Biomedical and Health Informatics  9  662
 AIME  International Conference on Artificial Intelligence in Medicine  13  293
 SMC  IEEE International Conference on Systems, Man and Cybernetics  13  6718
 AMIA  American Medical Informatics Association  81  8270
 IPMI  Information Processing in Medical Imaging  12  683
 CBMS  Symposium on Computer-Based Medical Systems  8  377
 BIOSTEC  International Joint Conference on Biomedical Engineering Systems and Technologies  74  748
 MeMeA  IEEE International Symposium on Medical Measurements and Applications  5  699
 CHASE  IEEE/ACM International Conference on Connected Health: Cooperative and Human Aspects of Software Engineering  3  70
 RECOMB  Research in Computational Molecular Biology  15  504
 MIE  Medical Informatics Europe  5  1323
 ICT4AWE  International Conference on Information and Communication Technologies for Ageing Well and e-Health  10  298
 VCBM  Eurographics Workshop on Visual Computing for Biomedicine  8  125
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Fig. 12. Distribution of novelty score by award status of BME papers.

improving inter-layer information flow–an underexplored concern in 
prior CNNs. High scores for (Dense Convolutional Network, convo-
lutional networks) and (connections, convolutional networks) further 
signal the conceptual shift introduced by dense connectivity. Finally, 
(benchmark tasks, feature reuse, 0.63) reflects the model’s novel reuse 
mechanism tied to task-level gains. Informer introduces several inno-
vations aimed at making Transformer-based architectures efficient and 
scalable for long sequence time-series forecasting. These include Prob-
Sparse self-attention for reducing time and memory complexity, self-
attention distilling for compressing intermediate representations, and 
a generative-style decoder for stable multi-step prediction without au-
toregressive roll-out. Our novelty assessment reflects these contributions 
through high-scoring concept pairs such as (long sequence time-series
forecasting, memory usage, 0.56), (long sequence time-series forecast-
ing, time complexity, 0.52), and (Transformer, self-attention distill-
ing, 0.52). These combinations capture the paper’s effort to integrate 
resource-aware optimization with architectural mechanisms–an align-
ment that is relatively rare in prior Transformer literature. Addition-
ally, (Transformer, generative style decoder, 0.50) and (ProbSparse self-
attention, Transformer, 0.49) reflect Informer’s structural extensions to 
the standard Transformer framework. Together, these results suggest 
that our combinatorial novelty measure is able to surface meaning-
ful conceptual linkages that correspond closely to the paper’s expert-
recognized innovations in both architectural design and task efficiency. 

For the non-award papers, Anytime Approximate Modal Reasoning 
and Anonymization for Skeleton Action Recognition show several novel 
concepts but with relatively low novelty scores overall, indicating their 
contributions are more incremental in nature. For example, the pair 
(anytime proof procedure, approximation method, 0.53) and (machine 
learning, security/privacy, 0.64) suggest that these works explore im-
portant ideas, but the novelty of their combinations is not as pronounced 
as in the award-winning papers. The lower-scoring combinations (un-
bounded logical introspection, unbounded logical omniscience, 0.11) 

and (differentially private training, hyperparameter relaxations, 0.28) 
highlight that while these papers introduce new knowledge, the con-
ceptual novelty is limited compared to the groundbreaking advances 
seen in DenseNet and Informer.

These findings validate that our combinatorial novelty measure is ef-
fective not only in capturing the significant innovations of high-impact 
papers like DenseNet and Informer but also in identifying papers with 
lower novelty, indicating incremental rather than transformative con-
tributions.

5.6.  Cross-field validation on biomedical engineering (BME) conferences

To evaluate the generalizability of the proposed method beyond 
the AI domain, we conducted an additional cross-field validation us-
ing data from the Biomedical and Medical Engineering domain,which 
differs from AI in terms of knowledge organization structures. A list 
of representative conferences was obtained from Research.com4, which 
ranks venues based on Impact Score metrics. Award-winning papers 
were manually collected from publicly available sources, including of-
ficial conference websites, academic blogs, and institutional announce-
ments. Conferences or years without accessible award records were ex-
cluded. For each included conference-year pair, non-award papers were 
retrieved from DBLP5 to construct the baseline dataset. Table 8 summa-
rizes the composition of the final dataset.

The proposed method was initially evaluated on some conferences 
in the AI domain, which served as the primary experimental setting. 
These conferences are widely recognized as top-tier venues in the field, 
indicating a relatively uniform standard of paper quality across events. 
This homogeneity justified the use of a threshold-based evaluation strat-
egy. However, conferences in the biomedical and medical engineering 

4 https://research.com/conference-rankings/computer-science/
biomedical-bioinformatics
5 https://dblp.org/db/conf/index.HTML
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domain exhibit substantial disparities in their Impact Scores. reflecting 
greater variability in paper quality. Consequently, fixed-threshold com-
parisons are less appropriate in this context.

To address this issue, we adopted a distributional comparison ap-
proach, consistent with the evaluation framework introduced by Wang 
et al. (2024b). Their study demonstrated that high-novelty scientific ar-
ticles tend to exhibit right-skewed distributions of novelty scores com-
pared to those with lower novelty. Following this rationale, we hypothe-
size that award-winning papers in the biomedical and medical engineer-
ing domain should show a distribution of novelty scores shifted toward 
higher values relative to non-award papers. When visualized as prob-
ability density functions, this distinction is expected to manifest as a 
rightward shift in the score distribution for award-winning papers rela-
tive to non-award papers.

The empirical results confirm this expectation. As shown in Fig. 12, 
the probability density function of novelty scores for award-winning pa-
pers (blue curve) displays a clear rightward shift compared to non-award 
papers (orange curve). The distribution for non-award papers is more 
concentrated around lower novelty scores, whereas award-winning pa-
pers are associated with a wider and more right-skewed distribution, 
suggesting a tendency toward higher novelty. This difference is also re-
flected in the median scores, as indicated by the vertical dashed lines: 
the median novelty score of award-winning papers significantly ex-
ceeds that of non-award ones. These results provide empirical support 
for the effectiveness of our method in the Biomedical Engineering do-
main. Despite differences from the AI domain in research focus and con-
tent structure, the novelty metric remains capable of distinguishing be-
tween award and non-award papers in the Biomedical Engineering field, 
demonstrating its applicability across scientific fields. 

6.  Conclusion

This article proposes a method for measuring the novelty in re-
search papers. We introduce an approach based on knowledge combi-
nations and knowledge propagation, which consists of four sequential 
steps: knowledge extraction, reference knowledge co-occurrence net-
work construction, knowledge propagation on reference knowledge co-
occurrence network, and focal paper novelty computation. Experimental 
results based on a computer science conference paper dataset demon-
strate the effectiveness of our method in quantifying the level of paper 
novelty.

We further conduct a multi-dimensional analysis and comparison 
of the characteristics of award-winning and non-award papers, includ-
ing the distribution of knowledge quantity, the number of knowledge 
combinations, and the distribution patterns of knowledge combina-
tion similarity and novelty. Several key conclusions are drawn: (a) 
Award-winning papers generally incorporate more knowledge, while 
non-award papers contain fewer knowledge. A higher knowledge count 
may provide stronger theoretical support, a richer research background, 
and greater interdisciplinary integration, potentially enhancing novelty. 
(b) The combination of knowledge may influence a paper’s novelty. Pa-
pers with more knowledge pairs tend to form interconnected knowl-
edge networks, fostering novel insights through recombination. In con-
trast, papers with fewer knowledge pairs may adhere to established 
paradigms, limiting novelty. (c) The distribution of knowledge combina-
tion novelty in award-winning papers is uneven, primarily concentrated 
in the lower range, with considerable variation between the combined 
knowledge. In contrast, non-award-winning papers exhibit a more uni-
form distribution of knowledge combination novelty, without a distinct 
high-frequency range. While some combinations demonstrate high nov-
elty, a substantial proportion of them also display lower novelty.

This study has several limitations. First, it relies on co-occurrence 
relationships as the basis for modeling associations between knowledge 

units. While this approach is partially effective, it falls short of capturing 
the more nuanced and fine-grained semantic relationships that often ex-
ist in scientific discourse. As a result, some conceptual connections may 
be oversimplified or overlooked. Second, the study evaluates novelty 
using a limited number of award-winning papers, which are selected 
annually by conferences or journals. This inherently narrow scope may 
exclude many highly novel but unrecognized contributions at the time 
of publication. This reflects a broader challenge in novelty detection: 
the lack of comprehensive and direct ground-truth data. The absence 
of universally accepted labels for novelty makes it difficult to evaluate 
models at scale with high fidelity.

To address these limitations, future research can explore more so-
phisticated techniques for modeling semantic relationships between 
knowledge units–moving beyond co-occurrence to incorporate contex-
tual or causal links using advanced natural language processing or 
knowledge graph techniques. Additionally, we aim to investigate the 
mechanisms by which scientific novelty emerges, with the goal of con-
structing a larger-scale, theoretically grounded dataset. Rather than re-
lying solely on indirect proxies such as awards or citation counts, this 
dataset would incorporate novelty indicators informed by conceptual 
and methodological criteria. Finally, while our current framework ag-
gregates novelty scores through summation, future work could explore 
more expressive modeling approaches–such as neural architectures ca-
pable of learning the relative importance and interactions among knowl-
edge components in a dynamic and context-aware manner. These di-
rections have the potential to significantly enhance the granularity,
accuracy, and interpretability of novelty detection models in scientific 
domains.
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Appendix A.  Prompts used in the experiments

Prompts used in the experiments are shown in Table A.9, where prompt-1 includes additional instructions specifically constraining knowledge 
extraction.

Table A.9 
Prompts used in the experiments.
 Prompt-1  Task

You are an expert assistant designed to extract critical knowledge from an academic abstract, with a special focus on innovation, methodology, and contributions.
Instructions:

- You are given an academic abstract.
- Your task is to extract the most important pieces of knowledge or concepts that:

- Describe the core topic of the paper.
- Represent the key knowledge central to the study.

- Are directly used in the paper’s research method, framework, or experimental design.
- Reflect the new theories, methods, or contributions introduced by the paper.

- Include key theories, frameworks, or technologies used.
- Represent the scientific or practical contribution to the field.
- All extracted items must appear verbatim in the abstract.
- Do not paraphrase, summarize, or add inferred content.

- Try to extract no more than ten distinct items.
- Return the final result as a single line, separated by English commas.

Now process the following abstract:
I have the following abstract:

[DOCUMENT]
Based on the abstract above, extract the knowledge that best describes the topic of the abstract.

Prioritize any concepts that relate to the paper’s innovation, methodology, and research contribution.
Make sure all extracted knowledge or concepts appear verbatim in the text and try not to exceed ten pieces.

Use the following format separated by commas:
<Knowledge>

 Prompt-2  Task
You are an expert assistant designed to extract critical knowledge from an academic abstract.

Now process the following abstract:
I have the following abstract:

[DOCUMENT]
Based on the abstract above, extract the knowledge that best describes the topic of the abstract.

Make sure all extracted knowledge or concepts appear verbatim in the text.
Use the following format separated by commas:

<Knowledge>

Appendix B.  Histograms and normal Q-Q plots of predicted novelty scores by award status

This appendix presents the SPSS-generated histograms and Q-Q plots of predicted novelty scores for the award-winning and non-award groups. 
These visualizations supplement the normality assessments described in the main text, providing additional evidence for the approximate normality 
of the data distributions. Fig. B.1 displays the four subplots: panels (a) and (c) present the histogram and Q–Q plot for the non-award group, while 
panels (b) and (d) show the corresponding plots for the award-winning group. The figures support the conclusion that the award group exhibits 
approximate normality, while the non-award group shows modest deviations in the upper tail.
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Fig. B.1. Normality assessment of predicted novelty scores by award status: histograms and Q-Q plots.
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