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 A B S T R A C T

Objective: Medical concept normalization (MCN) aims to map informal medical terms to formal medical 
concepts, a critical task in building machine learning systems for medical applications. However, most existing 
studies on MCN primarily focus on models and algorithms, often overlooking the vital role of data quality. This 
research evaluates MCN performance across varying data quality scenarios and investigates how to leverage 
these evaluation results to enhance data quality, ultimately improving MCN performance through the use of 
large language models (LLMs). The effectiveness of the proposed approach is demonstrated through a case 
study.
Methods: We begin by conducting a data quality evaluation of a dataset used for MCN. Based on these findings, 
we employ ChatGPT-based zero-shot prompting for data augmentation. The quality of the generated data is 
then assessed across the dimensions of correctness and comprehensiveness. A series of experiments is performed 
to analyze the impact of data quality on MCN model performance. These results guide us in implementing 
LLM-based few-shot prompting to further enhance data quality and improve model performance.
Results: Duplication of data items within a dataset can lead to inaccurate evaluation results. Data augmen-
tation techniques such as zero-shot and few-shot learning with ChatGPT can introduce duplicated data items, 
particularly those in the mean region of a dataset’s distribution. As such, data augmentation strategies must 
be carefully designed, incorporating context information and training data to avoid these issues. Additionally, 
we found that including augmented data in the testing set is necessary to fairly evaluate the effectiveness of 
data augmentation strategies.
Conclusion: While LLMs can generate high-quality data for MCN, the success of data augmentation depends 
heavily on the strategy employed. Our study found that few-shot learning, with prompts that incorporate 
appropriate context and a small, representative set of original data, is an effective approach. The methods 
developed in this research, including the data quality evaluation framework, LLM-based data augmentation 
strategies, and procedures for data quality enhancement, provide valuable insights for data augmentation and 
evaluation in similar deep learning applications.
Availability: https://github.com/RichardLRC/mcn-data-quality-llm/tree/main/evaluation
1. Introduction

Medical Concept Normalization (MCN), also referred to as med-
ical entity linking, is a natural language processing (NLP) task that 
seeks to map informal medical terms or phrases, often found on so-
cial media or other online platforms, to formal medical concepts in 
standardized medical databases [1,2]. The informal terms are typically 
sourced from platforms like X, Reddit, and AskaPatient, while the 
target medical databases include the Unified Medical Language System 
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(UMLS) [3], the Systematized Nomenclature of Medicine — Clini-
cal Terms (SNOMED CT) [4], Medical Subject Headings (MeSH) [5], 
among others [6,7]. Some examples of MCN tasks are shown in Fig.  1.

MCN was first introduced in the late 1980s in response to the 
rapid expansion of medical literature, with the goal of enhancing 
search efficiency by mapping users’ search queries to relevant MeSH 
terms [8]. The significance of MCN grew in the 2000s as the widespread 
adoption of social media and web applications led to a surge in informal 
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data mining, AI training, and similar technologies. 
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Fig. 1. MCN Examples. Phrases in the left are informal phrases, the arrows indicate MCN task, phrases in the right are the corresponding medical concepts of the informal phrases. 
Each color represents a MCN task.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
expressions of medical terms. MCN plays a critical role in improv-
ing the efficiency, accuracy, and effectiveness of various healthcare 
applications, including electronic health record (EHR) management, 
clinical decision support (CDS) systems, health information exchange 
(HIE), precision medicine (PM), clinical trial retrieval, and automated 
patient messaging systems. Ultimately, MCN has a direct impact on 
both patient care and healthcare administration.

As a crucial task in both NLP and healthcare, MCN has garnered 
significant attention over the past decade. During this time, more than 
20 prominent MCN datasets have been released, encompassing various 
languages, data sources, scales, and purposes. Notable examples include 
NCBI [9], Cadec [10], AskApatient [11], TwADR-L/S [11], SMM4H 
2017 ADR [12], PsyTAR [13], MCN [14], MedRed [15], COMETA [16], 
WikiMed [17], PubMedDS [17], and others. Leveraging these datasets, 
researchers have developed a range of machine learning approaches 
for MCN, including shallow learning models [18], deep learning mod-
els [19,20], pre-trained language models [21–24], transfer learning 
models [25,26], and graph neural networks [27].

Recent studies evaluating large language models (LLMs), such as 
Llama2 and GPT-3, for rare disease concept normalization have shown 
promising results [28]. However, performance improvements vary 
across datasets, and the current results are far from sufficient for 
practical applications. The MCN task is still suffering from several 
challenges: (1) There is a shortage of high-quality data, and generating 
such data for MCN is expensive and labor-intensive. (2) Many existing 
MCN datasets are either of low quality or lack rigorous validation, 
casting doubt on model performance. Despite the critical importance 
of data quality, the production of high-quality datasets for MCN is 
often overlooked due to the high costs and the difficulty in articulating 
scientific contributions from data creation efforts. However, high-
quality data is the cornerstone of modern data-centric AI, including 
deep learning and generative AI, and directly influences MCN perfor-
mance [29,30]. The well-known computing adage ‘‘garbage in, garbage 
out’’ is especially relevant to data-driven AI in the context of medical 
concept normalization [26], and under-valuing data quality in this field 
can have disproportionately negative effects on vulnerable populations 
and contexts [31–33].

Experts in data-centric AI emphasize that systematically evaluating 
the quality of datasets is crucial for developing high-performance AI 
systems [34–37]. Such evaluations provide valuable insights for data 
enhancement and system performance improvement [26,30,31,38]. 
For instance, Chen et al. [26] investigated the data quality issues 
and problematic validation process of an over-claimed DL-based MCN 
system [11]. Based on the investigation results, they proposed differ-
ent strategies for performance improvement of the MCN system that 
was built on the low-quality datasets [26]. Similarly, Budach et al. 
[30] explored empirically the relationship between six data quality 
dimensions and the performance of fifteen widely used ML algorithms 
covering the tasks of classification, regression, and clustering, finding 
that completeness, feature accuracy, label accuracy (correctness) have a 
2 
high effect, and class balance has a moderate effect on text classification 
tasks. Other research has demonstrated that the influence of different 
data quality dimensions on machine learning varies across tasks and 
scenarios, suggesting that tailored techniques should be employed to 
enhance data quality [39,40].

Unlike existing studies that primarily focus on model development, 
this study emphasizes the data quality aspect of medical concept nor-
malization (MCN). Our goal is to explore how large language models 
(LLMs), particularly ChatGPT, can be applied to improve data quality in 
MCN. Specifically, we aim to address the following research questions:

• RQ1: What is the most effective strategy for enhancing data 
quality in MCN?

• RQ2: How can the data quality of generated data in MCN be fairly 
evaluated?

• RQ3: How can adequate data be developed for model training and 
evaluation in MCN?

• RQ4: How does data quality impact model performance in MCN?

To address the research questions, this paper first employs ChatGPT-
based zero-shot prompting for data augmentation in MCN. We then 
evaluate the quality of the data generated by ChatGPT along the 
dimensions of correctness and comprehensiveness. Subsequently, we 
conduct a series of experiments to analyze the impact of data quality 
on MCN model performance. Based on these evaluations and analyses, 
we implement ChatGPT-based few-shot prompting to further enhance 
both data quality and model performance. The key contributions of this 
research are summarized as follows:

1. We apply different strategies for data augmentation in MCN 
using LLMs and evaluate the effectiveness of the strategies on 
two MCN datasets. Based on the research result, we propose an 
approach for selecting an effective data augmentation strategy 
in MCN.

2. We propose two quality metrics: correctness and comprehensive-
ness, for evaluating the data quality of the augmented data and 
develop experiments to quantitatively evaluate them.

3. We conduct a series of experiments to investigate the impact 
of data quality to MCN performance. Based on the results, we 
propose and test an approach for producing adequate data in 
MCN using LLMs.

The LLM-based data augmentation process, data quality evaluation 
methods, and performance improvement strategies discussed in this 
study can be valuable for machine learning researchers and practition-
ers in building high-performance systems beyond MCN. The code and 
datasets used in this research are available on GitHub.1

1 https://github.com/RichardLRC/mcn-data-quality-llm/tree/main/
evaluation.

https://github.com/RichardLRC/mcn-data-quality-llm/tree/main/evaluation
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H. Chen et al. Journal of Biomedical Informatics 165 (2025) 104812 
Statement of significance

 Summary Description  
 Problem Existing studies on medical concept 

normalization primarily focus on models and 
algorithms, often overlooking the vital role of 
data quality.

 

 What is 
already 
known

Although more than 20 prominent medical 
concept normalization datasets have been 
released, encompassing various languages, data 
sources, scales, and purposes, many of them 
are either of low quality or lack rigorous 
validation, casting doubt on model 
performance.

 

 What this 
paper adds

This study evaluates medical concept 
normalization performance across varying data 
quality scenarios and investigates how to 
leverage these evaluation results to enhance 
data quality, ultimately improving medical 
concept normalization performance using large 
language models (LLMs).

 

 Who would 
benefit from 
the 
knowledge in 
this paper

Machine learning researchers and practitioners 
who would like to build high- performance 
systems in medical concept normalization, 
other healthcare applications, and beyond.

 

2. Related work

In this article, we focus on improving data quality using large 
language models (LLMs) to enhance medical concept normalization 
(MCN). This research is closely related to several key areas, includ-
ing medical concept normalization, existing deep neural network and 
pre-trained language model algorithms for MCN, and data quality eval-
uation. Additionally, we explore various techniques, including LLMs, 
for augmenting training datasets.

2.1. Medical concept normalization

Medical concept normalization (MCN) is a fundamental but chal-
lenging task in medical domain. There is an increasing attention on 
MCN in the last decade. Table  1 provides a summary of the major 
datasets, state-of-the-art algorithms, and their corresponding perfor-
mance as reported in the existing literature.

Machine learning datasets for medical concept normalization (MCN) 
have primarily been developed using three approaches: expert anno-
tation [9,14,41], semi-automatic or automatic recognition [17], and 
patient self-annotation. These corpora are sourced from social media 
platforms (e.g., Twitter and Reddit), medical forums (e.g., AskaPatient), 
Wikipedia texts, and biomedical literature (e.g., PubMed abstracts), 
among others. The annotations typically include mentions of concepts 
such as drugs, adverse events, symptoms, and diseases, which are linked 
to their corresponding entries in controlled vocabularies like SNOMED 
Clinical Terms, AMT, and MedDRA [10].

However, the quality of annotated datasets varies, as it is influenced 
by several factors, including the data source, annotation guidelines, 
multi-stage annotation processes, measures of inter-annotator agree-
ment, and the expertise of clinical terminologists. Numerous MCN 
datasets have been reported to exhibit data quality issues. For instance, 
both [1,26] identified problems in the AskAPatient and TwADR-L 
datasets, such as: (1) significant overlap between training and test 
data, and (2) a limited portion of medical concepts being mapped to 
informal phrases on platforms like Twitter or AskaPatient, indicating a 
lack of comprehensiveness and class balance. These data quality issues 
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can introduce bias into models and produce misleading evaluation 
results. Alarmingly, several recent studies have used these datasets 
while overlooking these data quality concerns [42].

Different deep learning models, such as convolutional neural net-
work (CNN), recurrent neural network (RNN), bidirectional long short-
term memory (Bi-LSTM), and pre-trained language models (PLM) have 
been applied for the MCN task, as shown in 1. Most advanced algo-
rithms for MCN are based on PLMs, such as BERT and its variants; 
different neural networks are usually embedded to enhance the train-
ing. For example, Li et al. [43] framed named entity recognition (NER) 
as a word-word relation classification task (called 𝑊 2NER), which 
defined a multi-granularity 2D neural network for better refining the 
grid representations based on BERT and BiLSTM, then a co-predictor is 
used to sufficiently reason the word-word relations. 𝑊 2NER achieved 
SOTA performance on Cadec and several other NER datasets. However, 
medical NER is still different than the MCN task, therefore, 𝑊 2NER 
was not widely implemented as a baseline model in the MCN task. In 
additional, 𝑊 2NER was not evaluated on social media language. Liu 
et al. [42] proposed SapBERT, a pretraining scheme that self-aligns the 
representation space of biomedical entities. It offers an elegant one-
model-for-all solution to the problem of medical entity linking (MEL, or 
MCN), achieving SOTA performance on six widely used MCN datasets, 
including NCBI, MedMentions, AskAPatient, COMETA, and others. A 
recent study comprehensively evaluated nine recent SOTA MCN models 
along five axes: accuracy, speed, ease of use, generalization, and adapt-
ability to new ontologies and datasets [44], finding that ArboEL [45] 
and SapBERT [42] achieved the best performance; however, ArboEL 
was the most difficult to adapt and reproduce. Therefore, in the paper, 
we implement SapBERT [42] as our fundamental model for medical 
concept normalization.

2.2. Approaches for data quality evaluation

The quality of training data significantly influences the efficiency, 
accuracy, and complexity of machine learning (ML) tasks [46,47]. A 
lack of high-quality training data has become a major challenge for the 
effective use of ML, particularly in deep learning applications [26,48,
49]. Despite this, both ML researchers and practitioners tend to focus 
heavily on models and algorithms while undervaluing the importance 
of data quality [32]. Experts argue that systematically evaluating data 
quality across intelligently designed dimensions (metrics) and develop-
ing strategies to address quality gaps can reduce the need for iterative 
debugging in the ML pipeline, ultimately improving model performance 
with less effort from data scientists [26,39,47,48,50,51].

Recently, a survey paper provides valuable guidance for evaluating 
dataset quality in the field of machine learning by introducing a com-
prehensive quality evaluation process, which includes a framework for 
dataset quality evaluation with dimensions and metrics, computation 
methods for quality metrics, and assessment models [52]. The ap-
proaches for data quality evaluation can be divided into two categories: 
(1) quantitative methods; and (2) qualitative methods. Statistical anal-
ysis, experimental study, and empirical evaluation were commonly 
used quantitative methods. A set of data quality dimensions fit for 
the purpose of building specific ML applications are identified, and a 
group of experiments are usually designed to validate the data quality 
on the pre-selected dimensions for the experimental study. Table  2 
summarizes the recent approaches and empirical studies on data qual-
ity evaluation using quantitative methods. Quality dimensions, such 
as relevance, duplication, accuracy, completeness, class balance, and 
others are evaluated; different ML and DL algorithms, such as transfer 
learning (TL), reinforcement learning (RL), deep neural embeddings 
(DNE), active learning (AL), and others, are selected for experimental 
study for different purposes and tasks, such as intrusion detection, 
legal text classification, medical concept normalization, and others [26,
30,39,50,51,53–55]. These studies also demonstrate that data quality 
can be quantitatively evaluated, and the evaluation results can guide 
practitioners to develop more reliable and higher performance machine 
learning systems.
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Table 1
Summary of existing studies on medical concept normalization using different datasets (selected). 
 Datasets Url Purpose Descriptions Algorithms Performance Year  
 NCBI
(2014) Link Disease name entity 

recognition and normalization
793 PubMed abstracts, 
6892 disease mentions, 
790 unique disease concepts

SapBERT 0.9230a 2021 
 ResCNN 0.9240a 2021 
 KEBLM 0.9350a 2023 
 
Cadec 
(2015) Link

Mapping medical forum
posts (AskaPatient) to medical 
controlled vocabularies

393,618 Wikipedia texts, 
1,067,083 medical mentions 
57,739 unique UMLS CUIs

BertMCN 0.8995c 2021 
 CODER 0.7619b 2021 
 BioLORD 0.6300a 2024 
 KnowCAGE 0.8710a 2024 
 

AskAPatient 
(2016) Link

Mapping medical forum
posts (AskaPatient) to 
SNOMED-CT and Australian 
Medicines Terminology

3749 phrases 
1036 medical concepts 
156,652 records for training
7926 records for validation 
8662 records for testing

MTA-CharCNN 0.8465a 2019 
 SapBERT 0.8764a 2021 
 ULMFit 0.7817a 2021 
 BERT 0.8491a 2021 
 BioBART 0.8713a 2022 
 CODER 0.7011a 2022 
 

TwADR-L 
(2016) Link

Normalization of drugs
and adverse drug reactions
to SIDER 4.1 drug profile 
databases in English Tweets

1436 distinct twitter phrases
2220 medical concepts
48,057 records for training
1256 records for validation
1427 are used for testing

MTA-CharCNN 0.4646a 2019 
 ULMFit 0.3986a 2021 
 BERT 0.4171a 2021 
 SapBERT 0.4513a 2021 
 BertMCN 0.4832a 2021 
 CODER 0.3146a 2022 
 
SMM4H
(2016–2024) Link Normalization of AE 

mentions in English tweets
17,385 tweets for training, 
915 tweets for validation, 
10,984 tweets fro testing

BioSyn 0.3310a 2020 
 SapBERT 0.4340a 2021 
 BioLORD 0.4770a 2024 
 KnowCAGE 0.8720a 2024 
 
PsyTAR 
(2019) Link

Patient posts of effectiveness
and ADEs associated
with psychiatric medications

891 drugs reviews
4813 ARDs, 590 WDs,
1219 SSIs, 792 DIs
916 UMLS concepts

SapBERT 0.7171b 2021 
 CODER 0.7291b 2021 
 Roberta 0.8242c 2021 
 BioLORD 0.6630a 2024 
 MCN
(2019) Link

Mapping medical problem,
treatment, and test entities to 
medical controlled vocabularies

100 discharge summaries
10,919 concept mentions
3792 unique concepts

SapBERT+T 0.6936a 2022 
 NN classifier 0.8526a 2023 
 SciBERT 0.8700a 2023 
 MedRed
(2020) Link

Normalization of 
symptom/disease & drug entities
in Reddit posts

1980 Reddit posts 
974 drug entities 
3511 symptom entities

SapBERT 0.5040a 2021 
 ResCNN 0.5500a 2021 
 BioBART 0.7178a 2022 
 COMETA
(2020) Link

Normalization of 
SNOMED-CT entities
in Reddit posts

100K Reddit posts 
19,911 medical entities 
4003 specific concepts

ResCNN 0.8010a 2021 
 BioBART 0.8177a 2022 
 KEBLM 0.8080a 2023 
Notes: Adverse Events (AEs), Adverse Drug Events (ADEs) Adverse Drug Reaction (ADR), Withdrawal Symptoms (WDs), Sign/Symptoms/Illness (SSIs), Drug Indications (DIs).
In the performance column,
a Means accuracy@1.
b Means accuracy@3.
c Means accuracy@5.
2.3. Data augmentation techniques for quality improvement

Various methods have been employed to generate high-quality data 
for machine learning tasks with insufficient training data, including 
generative adversarial networks (GANs) [56], simulation [57], semi-
supervised learning [39,58,59], bootstrapping [60], supervised con-
trastive learning [61], and large language models (LLMs) [62]. For 
instance, Han et al. [60] introduced an iterative bootstrapping frame-
work for question-answer (QA) data augmentation, which iteratively 
generates large-scale, high-quality QA data based on an initial seed set 
of supervised examples. Similarly, Wu et al. [61] proposed a supervised 
contrastive learning model for text classification, which leverages data 
quality augmentation. Their approach dynamically trains on screened, 
high-quality datasets that contain beneficial information for model 
training, and further augments the selected data using key words with 
tag information.

Among current data augmentation techniques, large language mod-
els (LLMs), such as GPT and its variants, which are trained on large-
scale datasets using complex transformer-based architectures, have 
demonstrated superior performance compared to other methods [62]. 
LLMs offer several advantages, including natural language genera-
tion, contextual understanding, scalability, flexibility, error reduction, 
and the ability to augment sparse data. These strengths have made 
4 
LLMs widely adopted for data augmentation in various text classi-
fication tasks. Fig.  2 presents different methods in LLM-based data 
augmentation.

The most popular method in LLM-based data augmentation is direct 
prompting, as it requires fewer computational resources and is easier 
to implement. Zero-shot prompting (ZSL) and few-shot prompting (FSL) 
fall under this category. ZSL leverages LLMs to generate data without 
any prior examples from the training data, relying solely on specific 
instructions or labels to guide the generation process [63]. In contrast, 
FSL provides the LLM with a small set of examples in the prompts, along 
with task instructions, to guide the model in producing the desired 
outputs [64]. Recently, LLM-based data augmentation has been applied 
and evaluated in clinical, biomedical, and healthcare domains, showing 
promising performance [65,66].

However, ensuring the quality of augmented data, particularly in 
high-stakes domains such as healthcare, is arguably the most critical 
and challenging aspect of LLM-based data augmentation [66]. While 
augmented data typically enhances data diversity, improving a model’s 
generalizability and preventing overfitting, it can also introduce noise 
and errors, potentially degrading model performance rather than im-
proving it [67]. Our investigation identifies three common methods for 
controlling the quality of augmented data: (1) selecting augmented data 
based on the probability scores assigned by the language model, (2) 

https://www.ncbi.nlm.nih.gov/research/bionlp/Data/disease/
https://data.csiro.au/collection/csiro:10948
https://zenodo.org/records/55013
https://zenodo.org/records/55013
https://data.mendeley.com/datasets/rxwfb3tysd/2
https://sites.google.com/view/pharmacovigilanceinpsychiatry/home
https://pubmed.ncbi.nlm.nih.gov/30802545/
https://github.com/sanja7s/MedRed
https://www.dropbox.com/s/e8mdpberw959xhj/cometa.zip?e=3&dl=0
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Table 2
Summary of the recent approaches and empirical studies on data quality evaluation.
 Dimension(s) Evaluation 

method
Techniques Findings Reference  

 Duplication, overlap in 
training and test

Experimental 
study

ML and DL Data duplication and overlap in a 
dataset had different performance 
impacts on the pre-trained models 
and the classic ML model

Tran et al. [51]  

 Consistent representation, 
completeness, accuracy, 
uniqueness, class balance

Empirical study Classification, 
clustering, and 
regression algorithms

Data quality has a direct impact on 
machine learning performance, but 
the impact of different quality 
dimensions on classification, 
clustering, and regression tasks are 
different

Budach et al. [30] 

 Comprehensiveness, class 
balance

Experimental 
study

ML and DL The insufficient amount of data 
and class imbalance are the two 
major data quality issues for legal 
argument classification.

Chen et al. [39]  

 Duplication, overlap in 
training and test

Experimental 
study

TL A rigorous evaluation of data 
quality is necessary for guiding the 
quality improvement of machine 
learning

Chen et al. [26]  

 Data valuation Experimental 
study

RL The proposed meta learning 
framework can rank the data 
values for the training dataset 
efficiently and effectively

Yoon et al. [53]  

 Relevance Empirical 
evaluation

DNE Relevance can be evaluated from 
different perspectives, such as the 
quantity of relevant data and the 
degree of semantic similarity

Liu et al. [50]  

 Data bias Experimental 
study

AL The proposed generic formula for 
Data Quality Index (DQI) can help 
dataset creators create datasets free 
of unwanted biases

Mishra et al. [54]  

 Variety, veracity Empirical study DL The impact of the volume and 
quality of training data to the 
performance of deep learning and 
the importance of the data quality 
evaluation

Ding et al. [55]  

Notes: transfer learning (TL), reinforcement learning (RL), deep neural embeddings (DNE), active learning (AL).
Fig. 2. Taxonomy of data augmentation based large language models, such as GPT.

selecting data by measuring text similarity, and (3) involving domain 
experts in the data selection process.

Nevertheless, high-quality data cannot be defined solely by correct-
ness. Even when the generated data is correctly labeled, it does not 
necessarily lead to improvements in model training. A more precise 
definition and evaluation of augmented data quality is needed, along 
with a comprehensive analysis of how different data quality dimensions 
impact specific downstream applications [66,68–71].

3. Research design and methodology

The research design, as illustrated in Fig.  3, begins with data aug-
mentation using ChatGPT-based zero-shot prompting. After this initial 
5 
Fig. 3. The workflow of our research. Blue color means data collections, yellow 
color means data quality evaluation, green color means different training and testing 
strategies for model construction and evaluation. We performance zero-shot learning 
and few-shot learning for data quality improvement (data augmentation) in different 
phases.  (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

generation, human experts manually verify the correctness of the aug-
mented data to ensure baseline quality. Next, we experiment with 
different combinations of the original and augmented datasets, using 
performance analysis to inform iterative improvements in data quality. 
The following subsections provide detailed descriptions of the data col-
lection process, LLM-based data augmentation techniques, algorithms, 
baseline models, evaluation metrics, and experimental settings.
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Table 3
Summary of the data collections TwADR-L and AskAPatient.
 Item TwADR-L AskAPatient 
 Medical concepts 2220 1036  
 Phrases 1436 3749  
 Training pairs 48,057 156,652  
 Validation pairs 1256 7926  
 Test pairs 1427 8662  
 Concept mapped to phrases 273 1036  
 Concept–Concept pairs 24% 38.81%  
 Training ∩ validation 735 4891  
 Training ∩ test 861 5224  
 Duplication in training 17,567 112,537  
Notes: (1) Training ∩ Validation and Training ∩ Test are used to check the overlaps 
among the training datasets, their corresponding validation datasets, and test datasets. 
An overlap existing in two datasets means the same record exists in the two datasets. 
For example, if a record in a training dataset is ‘‘Hunger– don’t want to eat’’, and 
there is precisely the same record in a test dataset, then the record is considered as an 
overlapped record in the two datasets. (2) Duplication means two records are exactly 
the same; in other words, the same phrase is mapped to the same medical concept.

3.1. Data collections

Two widely used MCN datasets, TwADR-L and AskAPatient, are 
selected for experiments in this research. The detail information is 
illustrated in Table  3.

3.1.1. TwADR-L
The TwADR-L dataset, unveiled by Limsopatham and Collier [11], is 

a specialized aggregation of Twitter posts, specifically curated for med-
ical concept normalization. It emerged from the detailed annotation of 
Twitter utterances, focusing on the final three months of tweets prior to 
the dataset’s assembly. Aimed at supporting research into adverse drug 
reactions (ADRs), the dataset includes 1436 unique Twitter expressions, 
each linked to one or more out of 2220 medical concepts defined within 
it. The dataset is organized into ten folds, each comprising subsets for 
training, validation, and testing. In total, the TwADR-L contains 50,740 
entries, with each entry pairing an informal phrase to its respective 
medical concept. Of these, 48,057 entries are designated for training, 
1256 for validation, and 1427 for testing purposes.

3.1.2. AskAPatient
The AskAPatient dataset acts as a conduit between informal medical 

discussions on social media and established clinical ontologies, namely 
SNOMED-CT and the Australian Medicines Terminology (AMT) [11]. 
This collection encompasses 3749 phrases from social media, each 
correlated with one or more of the 1036 medical concepts delin-
eated within SNOMED-CT and AMT [26], facilitating a comprehensive 
mapping between non-clinical vernacular and professional medical 
terminologies. Similar to the organizational structure of the TwADR-
L dataset, AskAPatient is divided into ten folds as well, where each 
including designated training, validation, and testing datasets. Over-
all, AskAPatient boasts 173,240 records, with 156,652 allocated for 
training purposes, 7926 for validation, and 8662 for testing.

3.1.3. Quality issues of the datasets
According to the studies from [1,26], both of the datasets are suffer-

ing from several data quality issues. The first issue is redundancy: both 
of the datasets have over 50% of their records being duplicates [26], 
where the same phrases are repeatedly mapped to identical medical 
concepts. This issue extends across all data partitions; within each 
fold, a significant overlap exists between the training, validation, and 
testing datasets. Notably, in the testing datasets, over 60% of the entries 
duplicate those in the corresponding training datasets, raising concerns 
about the potential impact on the effectiveness of these datasets in 
evaluating models.

The second issue is lacking comprehensiveness. In both datasets, a 
specific category of entry, termed ‘‘concept to concept’’, is identified 
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where the informal phrase directly matches the medical concept. In the 
testing datasets, such entries constitute 24% in TwADR-L and 38.81% in 
AskAPatient, further complicating the datasets’ utility for precise model 
assessment.

Moreover, the TwADR-L dataset contains 1436 distinct Twitter 
phrases, each of them is supposed to be mapped to one or more medical 
concepts of the 2220 medical concepts; however, only 273 have been 
linked to their respective informal Twitter phrases. This discrepancy 
indicates that a significant portion of the medical concepts remain 
unassociated with informal expressions, highlighting a challenge with 
the dataset’s breadth of coverage. This limitation points to areas where 
the dataset’s comprehensiveness could be improved, as most medical 
concepts are not directly connected to the collected Twitter phrases.

3.2. Data augmentation with LLMs

In this section, we explore augmentation strategies for both datasets 
through the application of a Large Language Model (LLM), specifically 
ChatGPT.

3.2.1. Zero-shot prompt engineering
Addressing the quality issues identified in the Data Collection sec-

tion, we found significant duplication within both datasets. Specifically, 
the TwADR-L dataset exhibits a pronounced lack of informal phrases 
for a majority of its medical concepts. To address these concerns and 
enhance the datasets’ utility, we propose an augmentation strategy 
aimed at enriching the datasets with a broader array of informal 
phrases corresponding to each medical concept. This approach seeks to 
ameliorate the identified deficiencies, thereby increasing the datasets’ 
comprehensiveness and relevance for research purposes. To generate a 
wide-ranging set of informal expressions corresponding to the formal 
medical terms identified in the datasets, we utilized the OpenAI API. 
This process involved the API generating 100 informal phrases for each 
medical concept, derived from common usages in social texts. The 
guiding prompt for this generation was: ‘‘Please generate 100 informal 
phrases from social text which can be mapped to the medical concept 
[medical concept]’’. This methodology resulted in the accumulation of 
10,360 informal phrases for the AskAPatient dataset and 22,200 for the 
TwADR-L dataset.

3.2.2. Few-shot prompt engineering
To enhance the relevance and fidelity of the data further in align-

ment with the original datasets, we pursued a few-shot learning tactic 
as follows.

• We filtered out medical concepts devoid of informal phrases 
and instances where phrases directly mirrored the concepts. This 
filtering process selected 924 concepts from AskAPatient and 263 
from TwADR-L for augmentation.

• The objective was to create 20 novel phrases for each concept, 
using prompts enriched with pre-existing examples for guidance.

• In cases where a concept was linked to less than 10 phrases, all 
available examples were incorporated into the prompt. If more 
than 10 phrases were associated, a random selection of 10 was 
used.

• The generation prompt was structured as: ‘‘For the given medical 
concept: [Medical Concept], produce 20 related informal phrases.

This approach refined our data generation process, ensuring a closer 
match to the quality and context of the initial datasets.
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3.2.3. Quality dimensions of data augmentation
Correctness refers to the fact that a record in a dataset is accurate 

and valid, and they are correctly labeled if they are labeled records. 
Inaccurate or invalid data lead to data noises, and incorrectly labeled 
data lead to label noises. Therefore, a correct dataset should contain 
minimal label noises and data noises. In this study, correctness is 
calculated by the following formula:

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
𝑇 𝑜𝑡𝑎𝑙 # 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

To evaluate correctness, we randomly sample 5 informal phrases 
for each medical concept. Each record is evaluated by two graduate 
students, who have the background in health informatics, indepen-
dently to assure the quality. The students are requested to label each 
record as correct or incorrect. We calculate the agreement score using 
Cohen’s Kappa value between the two students. Cohen’s kappa is 
widely used statistic to measure inter-rater agreements between two 
annotators [72]. The value of Cohen’s kappa ranges between −1 and 1. 
Generally, a kappa of 0.8 or above is considered stable [72].

Comprehensiveness in this study means that ChatGPT generated 
data should contain all representative samples from the initial dataset 
or be semantically as similar (or close) as the initial dataset. Specif-
ically, we introduce the embedding similarity analysis between Chat-
GPT generated data and the initial data for measuring the compre-
hensiveness. More specifically, we utilize the BERT model (bert-base 
uncased model) to calculate the cosine similarities between the em-
beddings of informal phrases conveying identical medical concepts 
across the datasets. By employing bootstrap techniques, we generated 
distributions that reflect the semantic variances between the original 
and GPT-generated datasets. Comprehensiveness analysis allows us to 
gauge the semantic differences accurately, which provides guidance 
for refining our data generation strategies for better semantic consis-
tency between the datasets. We implement the following steps for the 
comprehensiveness evaluation:

1. Data selection: We refine the original datasets to identify medical 
concepts each represented by over 𝑁 (as the threshold) informal 
phrases, and then extract all informal phrases from both the 
original and GPT-generated datasets. We eliminate concept-to-
concept mappings within each dataset to maintain focus on 
phrase-level analysis. In a bid to explore the impact of data 
uniqueness on our findings, we conduct parallel experiments: 
one with duplicate entries removed to ensure dataset uniqueness 
and another without duplicate removal. This dual approach 
allows us to assess the influence of data redundancy on the 
cosine similarity distribution across the datasets.

2. Bootstrap iteration: For each iteration of the bootstrap pro-
cess, we randomly select one medical concept from each subset 
with replacement, ensuring the selection is proportional to the 
dataset size. This approach facilitates a balanced representation 
of concepts across iterations.

3. Similarity calculation: Within each selected medical concept, we 
compute the pairwise cosine similarity for all informal phrases. 
The average of these similarity scores for a concept provided a 
measure of its semantic coherence. After computing the averages 
for all selected concepts, we calculate the overall average sim-
ilarity score for each bootstrap iteration. This step is pivotal in 
quantifying the semantic similarity at the dataset level.

4. Distribution generation: Repeating the bootstrap process 5000 
times, we create a distribution of overall average similarity 
scores. This extensive repetition ensures the robustness of our 
analysis, offering a detailed view of the semantic landscape of 
our datasets.
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3.3. Medical concept normalization algorithm

SapBERT, self-aligning pretrained BERT [42], served as the back-
bone model in this research. Pre-trained transformer-based models have 
demonstrated significant advancements in Natural Language Process-
ing (NLP), particularly for specialized domains such as biomedical 
text processing [73]. Unlike general-purpose language models such as 
BERT, which may lack domain-specific coverage, SapBERT builds upon 
biomedical domain-specific backbone models through a self-alignment 
fine-tuning process. These backbone models, including Bio-BERT [74], 
ClinicalBERT [75], UMLSBERT [76], and PubMedBERT [77], are pre-
trained on biomedical corpora or clinical texts, providing rich domain-
specific features essential for biomedical tasks. The flexibility of Sap-
BERT allows it to leverage any of these domain-specific backbones, 
aligning their embeddings using the Unified Medical Language Sys-
tem (UMLS), which enhances the representation of biomedical terms 
through self-supervised learning. This approach ensures adaptability 
across various biomedical contexts, making SapBERT highly effective 
for medical concept normalization tasks.

Building upon this foundation, SapBERT introduces a self-alignment 
mechanism that optimizes the representation space of biomedical en-
tities. This process clusters synonymous terms closely while pushing 
non-synonymous terms apart, effectively modeling semantic relation-
ships.

Formal Definition: Given a biomedical term 𝑥 and its categorical 
label 𝑦, SapBERT’s objective is to learn a function 𝑓 (⋅; 𝜃) ∶ 𝑋 → R𝑑

that maps terms to a 𝑑-dimensional embedding space, where 𝜃 are the 
model parameters. For terms 𝑥𝑖 and 𝑥𝑗 , the model maximizes the co-
sine similarity ⟨𝑓 (𝑥𝑖), 𝑓 (𝑥𝑗 )⟩ for synonymous pairs while minimizing it 
for non-synonymous pairs, thereby improving clustering and semantic 
grouping.

Online Hard Pairs Mining: SapBERT employs an Online Hard Pairs 
Mining technique, which selects the most challenging positive and 
negative pairs within a mini-batch during training. For an anchor 𝑥𝑎, a 
positive match 𝑥𝑝 (sharing the same concept), and a negative match 𝑥𝑛
(a different concept), a triplet (𝑥𝑎, 𝑥𝑝, 𝑥𝑛) is formed. Only triplets where 
the negative is closer to the anchor than the positive by a margin 𝜆
are retained. This focuses training on hard-to-classify pairs, improving 
discrimination capacity and overall embedding quality.

3.4. Baselines

In addition to SapBERT [42], We also implemented the following 
baselines in this study:

• Deep neural network (DNN) [1], includes convolutional neural 
network (CNN) and recurrent neural network (RNN). CNN is 
implemented with an input layer, followed by a convolutional 
layer with multiple filters, a pooling layer, and a final softmax 
classifier. A 300-dimensional embedding is used to encode each 
word in the informal phrase, and the output is a CUI represent-
ing the corresponding medical concept. For RNN, an unrolled 
RNN architecture is implemented with input, hidden, and out-
put layers. Gated recurrent unit (GRU) is used to handle the 
vanishing gradient problem and to efficiently learn long-range 
dependencies.

• Multi-task Attentional Character-level Convolution Neural 
Network (MTA-CharCNN) [78], contains three components: (1) 
the main task for medical concept normalization, which takes 
a text sequence as input and the corresponding target concept 
category as output; (2) the auxiliary task, which aims to generate 
character-level domain-related importance weights of the input 
text sequence; (3) the joint learning of two tasks, which aims to 
learn all the parameters jointly by minimizing the overall loss 
function.
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• BERT + fine-tuning [26], only fine-tunes BERT language without 
fine-tuning the classifier model. The output of the final trans-
former layer of the BERT language model is then used as the 
feature sequences to be fed to the classifier for the medical 
concept normalization. In this model, BERT-Base-Uncased is used, 
fine-tuning is conducted on the AskAPatient and TwADR-L, re-
spectively.

• BioBART [79] is a biomedical auto-regressive generative lan-
guage model, which is pretrained on the biomedical corpora 
(PubMed abstracts). BioBART adopts BART (Bidirectional and 
Auto-Regressive Transformers), a generative pretrained language 
model which achieves SOTA results on different NLG tasks in the 
general domain [80]. BioBART achieves outstanding performance 
on multiple MCN datasets, include MedMentions, BC5CDR, NCBI, 
COMETA, and AskAPatient.

• CODER [81], which stands for contrastive learning on knowl-
edge graphs for cross-lingual medical term representation, lever-
ages a contrastive learning framework on a medical knowledge 
graph, specifically the Unified Medical Language System (UMLS). 
CODER is designed to generate close vector representations for 
different terms that represent the same or similar medical con-
cepts, with support across multiple languages. It is trained by 
contrasting positive and negative term pairs, incorporating rela-
tional knowledge from the knowledge graph into the embeddings. 
This relational knowledge is essential for medical term normal-
ization, helping to capture semantic connections between terms 
that share related concepts or treatments. CODER shows superior 
performance in zero-shot term normalization, semantic similarity, 
and relation classification tasks across various benchmarks, out-
performing several SOTA biomedical embeddings include Cadec 
and PsyTar.

• BioBERT [74], a domain-specific adaptation of BERT, is pre-
trained on biomedical corpora such as PubMed and PMC to 
handle domain-specific vocabulary and context. It retains BERT’s 
architecture and employs WordPiece tokenization for handling 
out-of-vocabulary terms. Fine-tuning on tasks like Named En-
tity Recognition (NER), Relation Extraction (RE), and Question 
Answering (QA) demonstrates its superior performance, achiev-
ing notable improvements over state-of-the-art models. In this 
research, BioBERT is utilized as the backbone model, further fine-
tuned on SapBERT to enhance medical concept normalization 
performance.

• UMLSBERT [76], a domain-specific adaptation of BERT, incor-
porates structured clinical knowledge from the Unified Medical 
Language System (UMLS) Metathesaurus. It enhances contextual 
embeddings by linking words sharing the same concept and lever-
aging semantic type embeddings to create clinically meaningful 
representations. Pre-trained on the MIMIC-III dataset, UMLSBERT 
outperforms BioBERT and Bio_ClinicalBERT in clinical Named 
Entity Recognition (NER) and natural language inference tasks. 
This research utilizes UMLSBERT as the backbone model, further 
fine-tuned on SapBERT to enhance medical concept normalization 
performance.

• ClinicalBERT [75], a domain-specific adaptation of BERT, is pre-
trained on clinical notes from the MIMIC-III dataset to capture 
the linguistic characteristics of clinical narratives. ClinicalBERT 
improves performance on tasks such as Named Entity Recogni-
tion (NER) and natural language inference (NLI) by fine-tuning 
general-domain BERT and BioBERT models with clinical data. It 
is particularly effective in modeling domain-specific terminology 
and context, outperforming general-domain models in non-de-
identification tasks. In this research, ClinicalBERT serves as the 
backbone model, further fine-tuned on SapBERT for enhanced 
medical concept normalization.
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• PubMedBERT [77] a biomedical domain-specific BERT model, 
is pre-trained from scratch using over 14 million PubMed ab-
stracts, comprising 3.1 billion words. This dataset covers a wide 
range of biomedical topics, ensuring domain-relevant vocabu-
lary and contextual representations. Unlike models that adapt 
general-domain BERT through continual pretraining, PubMed-
BERT demonstrates superior performance across biomedical NLP 
tasks, including Named Entity Recognition (NER) and relation 
extraction, due to its domain-specific vocabulary and pretrain-
ing corpus. In this research, PubMedBERT is utilized as a back-
bone model, further fine-tuned on SapBERT to enhance medical 
concept normalization.

3.5. Performance evaluation metrics

In this study, we evaluated the performance of our models on 
two datasets, AskAPatient and TwADR-L, utilizing top-N (N = 1 or 5) 
accuracy metrics, which measures the proportion of times the model’s 
most confident prediction (i.e., the highest ranked prediction) matches 
the correct medical concept exactly. Top-N accuracy is calculated with 
the following formula:

Top-N Accuracy =
Number of correct top-N predictions

Total number of predictions
where 𝑁 equals to 1 or 5. Top-N accuracy is particularly useful in 
settings where multiple plausible predictions may be acceptable, as is 
often the case in medical applications.

3.6. Experiment setting

Our experiment settings were summarized in Table  4, we design 
experiments to test the impact of different training data, data aug-
mentation methods, duplication, concept–concept mappings, data aug-
mentation size, and testing data on the model performance regarding 
TwADR-L and AskAPatient datasets, respectively.

4. Experimental results: Data quality to MCN performance

In this section, we first present the initial experiment results on the 
two original datasets, TwADR-L and AskAPatient, by implementing six 
SOTA models for medical concept normalization. We then describe the 
quality evaluation results of the augmented data with ChatGPT and also 
analyze the impact of data augmentation of the model performance of 
MCN. In addition, we discuss the lessons we learn from the data quality 
evaluate, which provides us guidance for data quality improvement.

4.1. Initial results

The initial experimental results on the two original datasets using 
the baseline models are presented in Table  5. Among these, MTA-
CharCNN and SapBERT achieve the best performance on TwADR-L and
AskAPatient, respectively. When considering both datasets, SapBERT 
demonstrates superior performance compared to other baselines, align-
ing with findings from prior studies [44,82,83]. Given this observation, 
we select SapBERT as the fundamental model for this study and focus 
on analyzing the impact of data quality on MCN performance. Fur-
thermore, we adopt PubMedBERT as the backbone for SapBERT in this 
study, based on its strong performance and balanced stability across the 
datasets. Specifically, PubMedBERT fine-tuned with SapBERT achieves 
a top-1 accuracy of 87.64% on AskAPatient, outperforming all other 
configurations, including BioBERT, ClinicalBERT and UMLSBERT, etc. 
On the TwADR-L dataset, while BioBERT (46.20%) and UMLSBERT 
(46.13%) slightly surpass PubMedBERT (45.13%), the performance 
differences are marginal (within 1.07%). Considering the overall consis-
tency and stability observed across both datasets, PubMedBERT strikes 
a balance between performance and domain-specific adaptability, mak-
ing it a suitable choice as the backbone model for SapBERT in this 
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Table 4
Experiment framework. The same experiments were conducted on the TwADR-L and AskAPatient datasets, respectively.
 Training DA method Duplication Concept–concept DA size Testing Purpose  
 Org-Tr – w w – Org-Te

Test the impact of DA, 
duplication, 
concept–concept mapping, 
and different test settings

 
 Org-Tr – w/o w – Org-Te  
 Org-Tr – w w/o – Org-Te  
 Org-Tr – w/o w o Org-Te + DA  
 Org-Tr FSL w w/o 20 Org-Te + DA  
 Org-Tr FSL w/o w/o 20 Org-Te + DA  
 DA ZSL w w 100 Org-Te Test models trained with 

DA, tested with original data 
with different settings

 
 DA ZSL w/o w 100 Org-Te  
 DA ZSL w/o w m Org-Te  
 Org-Tr + DA ZSL w w 100 Org-Te

Test different DA methods 
and sizes, different 
testing data for DA 
under different settings

 
 Org-Tr + DA ZSL w w m Org-Te + DA  
 Org-Tr + DA ZSL w/o w 100 Org-Te  
 Org-Tr + DA ZSL + context w/o w n Org-Te  
 Org-Tr + DA ZSL + synonyms w/o w n Org-Te  
 Org-Tr + DA FSL w w/o o Org-Te  
 Org-Tr + DA FSL w/o w/o o Org-Te  
 Org-Tr + DA FSL w w/o n Org-Te + DA  
 Org-Tr + DA FSL w/o w/o n Org-Te + DA  
Notes: original training (Org-Tr), original testing (Org-Te), data augmentation (DA) with GPT 3.5. Parameters: m = 1,5,10,20,40,80, n = 5, 10, 20, o = 5,10,20,40,80. The difference 
between o and m lies in the addition of a single data point. Adding just one data point shows no significant performance difference compared to the original model.
Table 5
The performance of SapBERT and other baselines models on data collections TwADR-L 
and AskAPatient regarding top-1 accuracy.
 Model TwADR-L AskAPatient 
 CNN (2017) 19.46 55.46  
 RNN (2017) 25.30 65.04  
 MTA-CharCNN (2019) 46.46 84.65  
 BERT + fine-tuning (2021) 41.71 84.91  
 PubMedBERT (2020) 
+ SapBERT (Fine-tuned)

45.13 87.64  

 BioBERT (2020)
+ SapBERT (Fine-tuned)

46.20 85.94  

 ClinicalBERT (2019) 
+ SapBERT (Fine-tuned)

45.06 87.23  

 UMLSBERT (2020) 
+ SapBERT (Fine-tuned)

46.13 86.38  

 BioBART (2022) – 87.13  
 CODER (2022) 31.46 70.11  

study. Building on these results, SapBERT demonstrates remarkable 
adaptability in handling complex medical terminology through its ad-
vanced pretraining strategies and optimization techniques. Its pre-
cise alignment of biomedical terms with their corresponding concepts 
has established new performance benchmarks across multiple MEL 
datasets, including AskAPatient and TwADR-L. Given its consistent per-
formance and stability, SapBERT provides a solid foundation for explor-
ing the impact of data quality on medical concept normalization tasks 
in this study. For simplicity, in the following sections, we refer to the 
PubMedBERT-based SapBERT model simply as SapBERT, unless stated 
otherwise.

4.2. Quality evaluation for data augmentation

In this step, we follow the method in Section 3.2.1 to generate the 
data. As discussed previously, quality evaluation and control is the key 
to assure that the augmented data can enhance the performance of 
NLP models instead of decreasing them. Fitting for the application in 
this study, correctness and comprehensiveness are selected as the most 
critical data quality dimensions.

4.2.1. Correctness
The total number of records being evaluated and the evaluation 

results are presented in Table  6.
From Table  6, we observe that the agreement scores for the AskA-

Patient and TwADR-L datasets demonstrate consistently high values, 
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reflecting the quality of the generated data. Specifically, for the AskA-
Patient dataset, the agreement score is 0.9342 without few-shot exam-
ples and 0.9465 with few-shot examples. Similarly, for the TwADR-L
dataset, the agreement score is 0.9526 without few-shot examples and 
0.9375 with few-shot examples. Details regarding the computation of 
agreement scores are provided in Section 3.2.3.

4.2.2. Comprehensiveness
We visualize the embedding similarity distributions, as a measure-

ment of comprehensiveness of the dataset in Fig.  4. In Fig.  4, the three 
sub-figures on the top illustrate the embedding similarity distributions 
for informal phrases of the AskAPatient, comparing original, GPT-
generated, and combined dataset (original dataset + GPT-generated 
dataset) with or without duplication present. the three sub-figures 
on the bottom show the same comparison of TwADR-L. In the fig-
ure, blue represents the embedding similarity (cosine) distribution 
after bootstrap iteration for the original dataset, red represents the 
same distribution of GPT-generated dataset, and green represents the 
combined dataset. Under each sub-figure, we also encapsulate the 
mean and standard deviation for the embedding similarity distribu-
tions. M_Org, M_GPT, and M_Com donates the average embedding 
similarity for the original, GPT-generated, and combined datasets, re-
spectively. SD_Org, SD_GPT, and SD_Com donates the variability (stan-
dard deviation) within these embedding similarity scores, highlighting 
the dispersion of data points around the mean value.

From Fig.  4, we make the following observations:

• Duplication has a direct impact on the data quality evaluation 
regarding comprehensiveness dimension (comparison between a 
and b for AskAPatient, c and d for TwADR-L).

• The data (informal phrases in this study) generated by ChatGPT 
using zero-short prompting lacks of comprehensiveness as can be 
seen from the red distributions: the generated data has a high 
semantic similarity.

• The distribution of data generated by ChatGPT using zero-short 
prompting is significantly different than the distribution of the 
original datasets, indicating that data augmentation with zero-
short prompting might distort the original datasets, as can be seen 
from sub-figures c and f.

4.3. Impact of data augmentation on MCN performance

The quality evaluation results in Section 4.2 provide a better un-
derstanding of the data augmentation quality with ChatGPT-based 
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Table 6
Human evaluation results of the augmented data. 10% randomly sampled records for each concept were used for human evaluation. #C indicates 
the number of correct labels, #I indicates the number of incorrect labels, and #I indicates the number of conflict labels by the two annotators. 
A-score indicates the agreement score between the two annotators and DA method represents data augmentation method.
 Datasets #C #I #O A-score DA method 
 AskAPatient 4669 170 341 0.9342 Zero-Shot  
 TwADR-L 10,203 271 526 0.9526 Zero-Shot  
 AskAPatient 4723 180 277 0.9465 Few-Shot  
 TwADR-L 10,092 214 694 0.9375 Few-Shot  
Fig. 4. Comprehensiveness evaluation results by calculating the BERT similarity within original dataset and ChatGPT-generated dataset (ZSL) separately with duplicated records 
(a and d), without duplicated records (b and e), combining original and ChatGPT-generated dataset (ZSL) without duplicated records (c and f). (a–c) represent AskAPatient and 
(d–f) represent TwADR-L. M donates mean value, SD donates standard deviation value.
zero-short prompting. In this section, we will quantify the impact 
of zero-shot data augmentation on the performance of medical con-
cept normalization models from different perspectives. The experiment 
results are presented in Tables  7 and 8.

4.3.1. Duplication of data items
The impact of duplication on MCN performance, as shown in Tables 

7 and 8, is three-fold:

1. Comparing the model performance on the original training and 
testing dataset with/without duplication (rows 1 and 6 for AskA-
Patient on Table  7, rows 1 and 6 for TwADR-L on Table  8), 
we see that the accuracy is 16.36% (top-1) and 6.8% (top-
5) higher with duplication of AskAPatient, and 17.17% (top-1) 
and 19.16% higher with duplication of TwADR-L, indicating 
the model performance might be over-claimed if trained on the 
original data directly.

2. Duplication issue in the dataset has a more significant impact 
on the model trained with GPT-generated data, which is demon-
strated in rows 3 & 5 for AskAPatient on Table  7 and rows 
3 & 5 for TwADR-L on Table  8. The difference of the model 
performance is higher on top-1 and top-5 accuracy.

3. In terms of the dataset combined with the original data and GPT-
generated data, rows 7 and 8 on both tables, duplication issue 
also causes misleading (around 20% & 10% for top-1 & top-5 
accuracy regarding AskAPatient, and 20% & 25% for top-1 & 
top-5 accuracy regarding TwADR-L) performance improvement.
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The above experiment results is align with the findings in [26], 
when incorporating data augmentation, the negative impact on MCN 
models is more significant. Therefore, we try to mitigate this impact 
by removing duplication from the training and testing data in the 
remaining experiments.

4.3.2. Volume of data
Our previous studies [39,84] have shown that the size of augmen-

tation data also impacts the model performance. More is not always 
better; more data without meeting the quality requirement may intro-
duce more noise, which will cause a defect in the model. In many sce-
narios, we need to select the appropriate amount of high-quality data. 
Therefore, in this study, we incrementally add more GPT-generated 
data for the training and check the changing of the performance. The 
purpose is to compare the model performance with different amount of 
augmentation data to optimize the size being employed in the rest of 
the experiments. The results are presented in Table  7 for AskAPatient 
and in Table  8 for TwADR-L.

To better visualize the influence of augmentation data size, we con-
ducted 12 model experiments, which were divided into two strategies: 
chatGPT training and combined training. The first strategy used only 
chatGPT-generated data as the training dataset (Gpt-Tr) and tested on 
the original testing dataset. The second strategy combined original and 
chatGPT-generated data as the training dataset (Com-Tr) and tested on 
the same original testing dataset. For each strategy, we experimented 
with 6 models, each with a different size (1, 5, 10, 20, 40, and 80) 
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Table 7
Model performance for AskAPatient dataset based on SapBERT under different data quality settings, including with/without duplication, size of the augmentation data, and testing 
data with/without augmentation data. All the augmentation data (DA) used in this table is based on zero-shot prompting (ZSL) with ChatGPT.
 Dataset Training DA method Duplication Concept–concept DA size Testing Accuracy (%)
 Top-1 Top-5  
 

AskAPatient

Org-Tr – w w – Org-Te 87.64 95.01  
 Org-Tr ZSL w w 100 Gpt-Te 32.95 52.69  
 Gpt-Tr ZSL w w 100 Org-Te 59.37 73.96  
 Gpt-Tr ZSL w w 100 Gpt-Te 83.92 95.17  
 Gpt-Tr ZSL w/o w 100 Org-Te 35.70 56.08  
 Org-Tr – w/o w – Org-Te 71.28 88.21  
 Com-Tr ZSL w w 100 Org-Te 84.69 93.35  
 Com-Tr ZSL w/o w 100 Org-Te 64.59 83.36  
 Org-Tr – w w/o – Org-Te 86.66 94.65  
 Gpt-Tr ZSL w w 1 Org-Te 60.24 77.54  
 Gpt-Tr ZSL w w 5 Org-Te 65.45 85.40  
 Gpt-Tr ZSL w w 10 Org-Te 66.47 85.13  
 Gpt-Tr ZSL w w 20 Org-Te 64.23 82.00  
 Gpt-Tr ZSL w w 40 Org-Te 61.80 77.69  
 Gpt-Tr ZSL w w 80 Org-Te 58.78 73.81  
 Com-Tr ZSL w/o w 1 Org-Te 71.14 88.30  
 Com-Tr ZSL w/o w 5 Org-Te 72.72 89.01  
 Com-Tr ZSL w/o w 10 Org-Te 71.53 88.33  
 Com-Tr ZSL w/o w 20 Org-Te 68.84 85.97  
 Com-Tr ZSL w/o w 40 Org-Te 66.47 85.35  
 Com-Tr ZSL w/o w 80 Org-Te 64.92 83.28  
 Com-Tr ZSL w/o w 5 Com-Te 66.33 81.54  
 Com-Tr ZSL w/o w 10 Com-Te 67.12 83.28  
 Com-Tr ZSL w/o w 20 Com-Te 72.29 88.36  
 Com-Tr ZSL w/o w 40 Com-Te 80.03 93.22  
 Com-Tr ZSL w/o w 80 Com-Te 85.94 95.37  
 Org-Tr ZSL w/o w 5 Com-Te 56.32 69.33  
 Org-Tr ZSL w/o w 10 Com-Te 46.28 64.48  
 Org-Tr ZSL w/o w 20 Com-Te 43.49 60.01  
 Org-Tr ZSL w/o w 40 Com-Te 37.32 55.32  
 Org-Tr ZSL w/o w 80 Com-Te 35.28 54.19  
 Com-Context ZSL w/o w 5 Org-Te – 88.47  
 Com-Synonym ZSL w/o w 5 Org-Te – 88.63  
 Com-Context ZSL w/o w 10 Org-Te – 87.89  
 Com-Synonym ZSL w/o w 10 Org-Te – 88.27  
 Com-Context ZSL w/o w 20 Org-Te – 88.01  
 Com-Synonym ZSL w/o w 20 Org-Te – 88.08  
of the generated data in the training dataset. The results demonstrate 
that when implementing data augmentation, due to the comprehen-
siveness issue of the data, the negative impact on the training is 
increasing with more augmented data. From Table  7, we observe that 
the model performance initially improves with the incremental addition 
of GPT-generated data, peaking when the dataset includes 10 samples. 
Specifically, the Top-1 accuracy increased from 60.24% to 66.47% 
as the augmentation data size grew from 1 to 10 samples. However, 
beyond this point, a decline in performance is evident. With 20, 40, 
and 80 samples, the accuracy drops progressively to 64.23%, 61.80%, 
and 58.78%, respectively. The Top-5 accuracy follows the same trend, 
with an initial increase followed by a decrease as the data size grows 
beyond 10 samples.

A similar trend is displayed in Table  8 for the TwADR-L dataset. The 
Top-1 accuracy increased from 28.73% to 31.79% as the augmentation 
data size grew from 1 to 10 samples. However, as the number of 
samples increased to 20, 40, and 80, the accuracy fell to 29.67%, 
26.56%, and 23.72%, respectively. The Top-5 accuracy for the TwADR-
L dataset also follows this trend, reinforcing the observation that more 
data can introduce noise and diminish model performance beyond a 
certain point.

4.3.3. Context and synonym in prompts
In the context of zero-shot learning, we further investigated the 

effects of context-specific and synonym-based augmentation strategies 
on the performance of MCN models. The prompts used for generating 
these data types were:

• Context-Specific Augmentation: ‘‘Please generate 20 informal
phrases from social text, each in a specific context or scenario, 
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that can be mapped to the medical concept [current_formal_
concept]’’.

• Synonym-Based Augmentation: ‘‘Please generate 20 informal
phrases from social text that include synonyms or similar meaning 
words for the medical concept [current_formal_concept]’’.

The results, shown in Tables  7 and 8, reveal interesting trends when 
comparing the performance of these augmentation methods to that of 
the original training data.

For the AskAPatient dataset, the original data (Org-Tr) without any 
augmentation achieved a Top-5 accuracy of 88.21%. When context-
specific augmentation (Com-Context) was applied with 5 samples, the 
Top-5 accuracy slightly increased to 88.47%, and for synonym-based 
augmentation (Com-Synonym), it was 88.63%. However, as the num-
ber of augmented samples increased to 10 and 20, the performance 
showed fluctuations rather than consistent improvement. The Top-5 
accuracy for context-specific augmentation (Com-Context) decreased to 
87.89% at 10 samples and slightly recovered to 88.01% at 20 samples. 
Similarly, for synonym-based augmentation (Com-Synonym), the Top-
5 accuracy decreased to 88.27% at 10 samples and showed a minimal 
increase to 88.08% at 20 samples.

For the TwADR-L dataset, the original data (Org-Tr) without any 
augmentation achieved a Top-5 accuracy of 47.98%. When context-
specific augmentation (Com-Context) was applied with 5 samples, the 
Top-5 accuracy was 46.54%, and for synonym-based augmentation 
(Com-Synonym), it was 47.03%, which is lower than the performance 
of the original data. As the number of augmented samples increased 
to 10 and 20, both augmentation methods showed a slight decrease 
in performance. The Top-5 accuracy for context-specific augmenta-
tion (Com-Context) decreased from 46.54% with 5 samples to 45.72% 
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Table 8
Model performance for TwADR-L dataset based on SapBERT under different data quality settings, including with/without duplication, size of the augmentation data, and testing 
data with/without augmentation data. All the augmentation data (DA) used in this table is based on zero-shot prompting (ZSL) with ChatGPT.
 Dataset Training DA method Duplication Concept–concept DA size Testing Accuracy (%)
 Top-1 Top-5  
 

TwADR-L

Org-Tr – w w – Org-Te 45.13 67.14  
 Org-Tr ZSL w w 100 Gpt-Te 32.95 52.69  
 Gpt-Tr ZSL w w 100 Org-Te 24.53 40.22  
 Gpt-Tr ZSL w w 100 Gpt-Te 83.30 94.93  
 Gpt-Tr ZSL w/o w 100 Org-Te 14.79 27.31  
 Org-Tr – w/o w – Org-Te 27.96 47.98  
 Com-Tr ZSL w w 100 Org-Te 40.72 62.30  
 Com-Tr ZSL w/o w 100 Org-Te 19.41 38.86  
 Org-Tr – w w/o – Org-Te 37.70 57.53  
 Gpt-Tr ZSL w w 1 Org-Te 28.73 46.20  
 Gpt-Tr ZSL w w 5 Org-Te 31.32 47.65  
 Gpt-Tr ZSL w w 10 Org-Te 31.79 48.63  
 Gpt-Tr ZSL w w 20 Org-Te 29.67 45.89  
 Gpt-Tr ZSL w w 40 Org-Te 26.56 41.72  
 Gpt-Tr ZSL w w 80 Org-Te 23.72 39.38  
 Com-Tr ZSL w/o w 1 Org-Te 27.33 47.04  
 Com-Tr ZSL w/o w 5 Org-Te 27.97 48.50  
 Com-Tr ZSL w/o w 10 Org-Te 27.48 49.02  
 Com-Tr ZSL w/o w 20 Org-Te 26.49 47.26  
 Com-Tr ZSL w/o w 40 Org-Te 22.57 42.12  
 Com-Tr ZSL w/o w 80 Org-Te 20.38 40.25  
 Com-Tr ZSL w/o w 5 Com-Te 41.57 63.38  
 Com-Tr ZSL w/o w 10 Com-Te 51.25 71.39  
 Com-Tr ZSL w/o w 20 Com-Te 66.47 84.34  
 Com-Tr ZSL w/o w 40 Com-Te 74.55 90.25  
 Com-Tr ZSL w/o w 80 Com-Te 82.24 94.58  
 Org-Tr ZSL w/o w 5 Com-Te 22.94 37.67  
 Org-Tr ZSL w/o w 10 Com-Te 20.13 35.28  
 Org-Tr ZSL w/o w 20 Com-Te 19.87 35.10  
 Org-Tr ZSL w/o w 40 Com-Te 19.56 34.94  
 Org-Tr ZSL w/o w 80 Com-Te 19.80 35.06  
 Com-Context ZSL w/o w 5 Org-Te – 46.54  
 Com-Synonym ZSL w/o w 5 Org-Te – 47.03  
 Com-Context ZSL w/o w 10 Org-Te – 45.72  
 Com-Synonym ZSL w/o w 10 Org-Te – 46.38  
 Com-Context ZSL w/o w 20 Org-Te – 44.32  
 Com-Synonym ZSL w/o w 20 Org-Te – 45.41  
with 10 samples and further to 44.32% with 20 samples. Similarly, 
the synonym-based augmentation (Com-Synonym) showed a Top-5 
accuracy of 46.38% at 10 samples, decreasing to 45.41% at 20 samples.

When comparing the performance across the two datasets, AskAP-
atient consistently showed higher baseline accuracy with original data 
than TwADR-L. However, both datasets exhibited a similar pattern 
where synonym-based augmentation marginally outperformed context-
specific augmentation. Despite these slight improvements, neither aug-
mentation strategy provided a significant enhancement over the ac-
curacy levels achieved by the models trained on the original data 
alone.

4.3.4. Testing data
In machine learning tasks, it is crucial that the testing data closely 

follows the distribution of the training data. If augmentation data 
significantly alters the distribution of the training dataset, the testing 
dataset should also be updated to reflect these changes. To explore the 
optimal design of a testing dataset after the inclusion of augmentation 
data, we conducted a series of experiments using different testing 
datasets. Specifically, we tested the models on the original testing 
data, ChatGPT-generated data, and a combination of both original and 
ChatGPT-generated data.

The results of these experiments for the AskAPatient dataset are 
detailed in Table  7. This table illustrates the model performance under 
various data quality settings, including the presence or absence of 
duplication, different sizes of augmentation data, and different types 
of testing data.

We observe that using only the original testing data (Org-Te) or only 
ChatGPT-generated testing data (Gpt-Te) produces distinct outcomes. 
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When the training data consists solely of GPT-generated samples (Gpt-
Tr), the model achieves a Top-1 accuracy of 59.37% and a Top-5 
accuracy of 73.96% on the original testing dataset. Conversely, when 
tested on GPT-generated testing data, the model performance signifi-
cantly improves, achieving a Top-1 accuracy of 83.92% and a Top-5 
accuracy of 95.17%. This indicates that the model performs better on 
data that is similar in distribution to its training set, and this trend was 
consistent even when duplication was removed.

When combining the original training data with GPT-generated data 
(Com-Tr) and testing on the original dataset, the model achieves a Top-
1 accuracy of 84.69% and a Top-5 accuracy of 93.35%, with scores 
of 64.59% for Top-1 accuracy and 83.36% for Top-5 accuracy when 
duplication was removed. Testing on the combined dataset (Com-Te) 
further improves the performance, with the Top-1 and Top-5 accuracies 
reaching 85.94% and 95.37%, respectively. Without duplication, the 
performance was 64.59% and 83.36% for Top-1 and Top-5 accuracy.

Furthermore, we evaluated the impact of different sizes of gen-
erated samples within the combined training data (Com-Tr) on the 
combined testing data (Com-Te) without duplication. For example, 
with Com-Tr using 5, 10, 20, 40, and 80 samples, the model achieves 
Top-1 accuracies of 66.33%, 67.12%, 72.29%, 80.03%, and 85.94%, 
respectively. The corresponding Top-5 accuracies are 81.54%, 83.28%, 
88.36%, 93.22%, and 95.37%. This trend shows that increasing the 
size of the generated samples in the combined training set generally 
improves model performance on the combined testing set.

In contrast, when the original training data (Org-Tr) was augmented 
with different sizes of generated samples and tested on the combined 
testing data (Com-Te), the performance showed a decreasing trend with 
increased augmentation data size. For instance, with 5, 10, 20, 40, 
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and 80 samples, the model’s Top-1 accuracies were 56.32%, 46.28%, 
43.49%, 37.32%, and 35.28%, respectively, while the Top-5 accuracies 
were 69.33%, 64.48%, 60.01%, 55.32%, and 54.19%.

A similar analysis was conducted for the TwADR-L dataset, as shown 
in Table  8. Here, we see that the model’s performance trends align with 
those observed for the AskAPatient dataset. Using GPT-generated sam-
ples (Gpt-Tr) for training and testing on the GPT-generated testing data 
yields the highest performance, with Top-1 and Top-5 accuracies of 
83.30% and 94.93%, respectively. Conversely, using only the original 
testing data shows lower performance, highlighting the importance of 
testing data distribution alignment, with or without duplication.

For the combined training data (Com-Tr) tested on the combined 
testing data (Com-Te), the model’s Top-1 accuracies are 41.57%,
51.25%, 66.47%, 74.55%, and 82.24% for 5, 10, 20, 40, and 80 
samples, respectively. The Top-5 accuracies follow a similar trend, 
reaching up to 94.58%.

4.4. Discussion

The results of our study underscore the critical importance of data 
quality in medical concept normalization (MCN) when utilizing zero-
shot data augmentation with ChatGPT. We found that duplication 
within datasets can significantly inflate model performance, potentially 
leading to misleading conclusions if not properly addressed, as noted 
in prior research [85,86]. This issue was evident across both the AskA-
Patient and TwADR-L datasets, where models trained on duplicated 
data demonstrated substantially higher accuracy compared to those 
trained on de-duplicated data. Moreover, while data augmentation can 
enhance diversity, our findings align with existing literature [39,84] in 
showing that simply increasing the quantity of augmented data does 
not always improve performance; in fact, beyond a certain point, it 
often introduces noise that diminishes model effectiveness. This was 
observed in both datasets, where performance peaked at an optimal 
size of augmented data but declined as more samples were added. 
Additionally, our exploration of the impact of different testing data on 
model performance reveals that alignment between the distribution of 
training and testing data is crucial for accurate evaluation, as supported 
by previous studies [87,88]. Models trained on GPT-generated data per-
formed significantly better on similar testing data, while those trained 
on a combination of original and augmented data showed improved 
performance when tested on a mix of both. These insights highlight 
the need for careful management of data quality and quantity in MCN 
tasks.

5. Experimental results: Data quality enhancement for MCN per-
formance improvement

This section presents the outcomes of our efforts to enhance data 
quality and its subsequent impact on the performance of Medical Con-
cept Normalization (MCN) models. By utilizing few-shot learning (FSL) 
to generate augmented data, we aimed to improve the comprehensive-
ness and coherence of the datasets. The data generation and filtering 
processes, which were crucial in refining the dataset for this purpose, 
are detailed in Section 3.2.2. The specific enhancement techniques 
employed and their effects on model performance will be discussed in 
the following sections (see Fig.  5).

5.1. Comprehensiveness improvement with FSL-based data augmentation

Figs.  4 and 6 illustrate the impact of data augmentation techniques 
on the comprehensiveness of medical concept normalization. Specif-
ically, we compare the BERT similarity scores between the original 
dataset, ChatGPT-generated datasets using Zero-Shot Learning (ZSL), 
and Few-Shot Learning (FSL), as well as their combinations. In Fig.  4, 
the combined dataset (original + ZSL-generated) is represented by the 
green plots, showing moderate similarity scores. Conversely, in Fig.  6, 
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the purple plots represent this same combined dataset, while the green 
plots represent the combined dataset (original + FSL-generated). The 
green plots achieve higher similarity scores compared to the purple 
plots, indicating that FSL-generated data aligns more closely with the 
original dataset.

The increase in similarity scores from ZSL to FSL demonstrates 
the effectiveness of FSL in generating data that is more representative 
of the original dataset. This suggests that FSL can produce higher-
quality synthetic data [89], improving the overall comprehensiveness 
and reliability of the augmented dataset. The consistent improvement 
in similarity scores with the use of FSL-based data augmentation high-
lights its potential for enhancing data quality. By generating data 
that more accurately reflects the original dataset, FSL contributes to 
better performance in medical concept normalization tasks. This com-
parison underscores the superiority of FSL over ZSL in generating 
high-quality synthetic data, thus advancing data quality enhancement 
methodologies in the field of medical informatics.

5.2. Dataset coherence on performance improvement

Table  9 illustrates the performance of the SapBERT model under 
various data quality settings, emphasizing the critical role of dataset 
coherence in determining model accuracy. The table compares results 
using the original training dataset (Org-Tr) and a combined dataset 
(Com-Tr) augmented with GPT-generated data, evaluated with and 
without data augmentation (FSL) and duplication. By comparing ac-
curacies across identical duplication and concept–concept settings, we 
can discern the impact of few-shot learning (FSL) with varying sizes of 
augmentation data on the model’s performance.

For the AskAPatient dataset, incorporating duplication consistently 
boosts performance, with a notable peak at 10 augmentation data 
points, where the model achieves a top-1 accuracy of 88.01%—an 
improvement over the original dataset’s 86.66%. However, as the 
augmentation size increases to 40 and 80, top-1 accuracy slightly 
tapers off to 86.37% and 85.82%, respectively, although top-5 accuracy 
remains relatively stable around 95%. A similar trend emerges for 
the TwADR-L dataset: with duplication, top-1 accuracy climbs from 
37.70% (original data) to 47.93% (5 data points), then gradually 
declines as augmentation expands to 40 (46.93%) and 80 (46.21%).

When duplication is removed, moderate amounts of augmentation 
also yield improvements over the original dataset. For AskAPatient, 
top-1 accuracy rises from 69.98% to 72.16% with 10 data points but 
decreases again with 40 (70.03%) and 80 (69.24%). In TwADR-L, simi-
larly, performance gains observed at 5 or 10 data points wane at higher 
augmentation levels of 40 and 80. Overall, these findings indicate 
that while introducing a certain quantity of GPT-generated data can 
significantly enhance classification accuracy, excessively large augmen-
tation sets may introduce noise and diminish gains, underscoring the 
importance of balancing augmentation size.

Beyond measuring classification accuracy, we further investigated 
the coherence of GPT-generated data by analyzing the relationship 
between in-context sample size and data consistency. Specifically, 
we focused on comparing the characteristics of generated data when 
prompted with concepts that have fewer than ten examples versus those 
guided by ten or more examples in the few-shot learning setup. This 
analysis aimed to evaluate whether larger in-context examples lead to 
more coherent and consistent outputs.

To assess coherence, we utilized BERT-based embeddings to repre-
sent each generated informal phrase in both the TwADR-L and AskAPa-
tient datasets. For each concept, we computed pairwise cosine similarity 
scores among its generated phrases, measuring the internal consistency 
of the outputs. To ensure statistical robustness, we conducted a 5,000-
iteration bootstrapping procedure. In each iteration, concepts were 
randomly sampled, and their average within-concept similarity scores 
were computed to capture distributional trends across different sample 
sizes.
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Fig. 5. Comprehensiveness evaluation results by calculating the BERT similarity within the original dataset, ChatGPT-generated dataset (FSL), and combined datasets separately (a 
and c). In (b) and (d), cross-dataset BERT similarity comparisons are shown between the combined datasets (ZSL + original in purple, and FSL + original in green) and the original 
dataset. (a and b) represent the AskAPatient dataset, while (c and d) represent the TwADR-L dataset. All similarity scores were calculated after removing duplicated records.
Figs.  6(c) and 6(d) present the results for the TwADR-L dataset, 
while Figs.  6(a) and 6(b) illustrate similar patterns for AskAPatient. The 
line plots in Figs.  6(a) and 6(c) show the mean similarity scores as a 
function of the few-shot sample size, ranging from 2 to 10. The shaded 
regions represent the range (minimum–maximum) of similarity scores 
observed for each sample size.

A key observation is that smaller sample sizes (e.g., 2–4) exhibit 
higher similarity scores and narrower shaded regions, indicating that 
the generated data is more internally consistent but potentially lacks 
diversity. This suggests that when the LLM is guided by fewer ex-
amples, it tends to overfit to the patterns present in the prompts, 
resulting in outputs that are closely aligned but semantically less varied. 
Conversely, as the sample size increases, particularly beyond 6–10 
examples, the mean similarity scores show slightly more fluctuation, 
and the shaded regions expand. This trend reflects greater variety and 
semantic diversity in the generated outputs, albeit with slightly reduced 
internal coherence.

In the TwADR-L dataset (Fig.  6(c)), the mean similarity scores 
exhibit a slight dip around sample size 6, accompanied by a noticeably 
wider shaded range. However, this pattern is primarily attributed to 
the smaller number of concepts (only 9) available at this sample size, 
compared to over 20 concepts for other sample sizes. The limited data 
introduces higher variance, resulting in a broader range, rather than 
indicating intrinsic diversity in the generated outputs. A similar trend 
is observed in the AskAPatient dataset (Fig.  6(a)), where the mean 
similarity peaks at size 6 before slightly declining as the sample size 
approaches 10. Unlike TwADR-L, the shaded ranges remain relatively 
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narrow across sample sizes, reflecting a more stable distribution due to 
consistently larger concept counts.

The bootstrapping distributions in Figs.  6(d) and 6(b) further high-
light the influence of sample size on the diversity of GPT-generated 
outputs. For TwADR-L, expansions generated using concepts with fewer 
than ten examples exhibit a higher mean similarity distribution (blue) 
with a narrower spread, indicating that smaller sample sizes tend to 
produce outputs that are more internally consistent but less diverse. 
In contrast, concepts guided by ten or more examples yield a slightly 
lower mean similarity (red) but with a broader distribution, suggesting 
increased variability and semantic diversity in the generated data.

A slightly different trend is observed in the AskAPatient dataset. 
Concepts with more than ten examples produce outputs with a slightly 
higher mean similarity compared to those with fewer than ten ex-
amples. However, the spread of similarity scores is noticeably wider, 
reflecting greater diversity in the generated outputs. In contrast, con-
cepts with fewer than ten examples yield a narrower distribution, 
indicating higher internal consistency but reduced diversity. The re-
sults indicate that larger in-context sample sizes encourage the model 
to explore broader semantic variations while maintaining reasonable 
coherence, whereas smaller sample sizes constrain the outputs to be 
more homogeneous. Consequently, tasks requiring high fidelity may 
benefit from smaller sample sizes, while tasks prioritizing coverage and 
generalization may benefit from larger in-context examples.

Our analysis highlights the role of dataset coherence and diversity in 
augmenting training data effectively. Larger in-context examples enable 
the generation of more diverse outputs, capturing broader semantic 
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Table 9
Model performance based on SapBERT under different data quality settings, including with/without duplication, size of the augmentation data, and testing data with/without 
augmentation data. All the augmentation data (DA) used in this table is based on few-shot prompting (FSL) with ChatGPT.
 Dataset Training DA method Duplication Concept–concept DA size Testing Accuracy (%)
 Top-1 Top-5  
 

AskAPatient

Org-Tr – w/o w/o – Org-Te 69.98 87.33  
 Com-Tr FSL w/o w/o 5 Org-Te 71.73 88.42  
 Com-Tr FSL w/o w/o 10 Org-Te 72.16 88.20  
 Com-Tr FSL w/o w/o 20 Org-Te 70.51 88.85  
 Com-Tr FSL w/o w/o 40 Org-Te 70.03 87.95  
 Com-Tr FSL w/o w/o 80 Org-Te 69.24 86.74  
 Org-Tr – w w/o – Org-Te 86.66 94.65  
 Com-Tr FSL w w/o 5 Org-Te 87.75 95.16  
 Com-Tr FSL w w/o 10 Org-Te 88.01 95.06  
 Com-Tr FSL w w/o 20 Org-Te 87.02 95.38  
 Com-Tr FSL w w/o 40 Org-Te 86.37 95.09  
 Com-Tr FSL w w/o 80 Org-Te 85.82 94.94  
 Org-Tr FSL w w/o 20 Nt 38.41 57.06  
 Org-Tr FSL w/o w/o 20 Nt 30.66 51.08  
 Com-Tr (80%) FSL w w/o 20 Nt 59.62 81.34  
 Com-Tr (80%) FSL w/o w/o 20 Nt 54.61 78.96  
 

TwADR-L

Org-Tr – w/o w/o – Org-Te 28.97 50.15  
 Com-Tr FSL w/o w/o 5 Org-Te 32.54 52.31  
 Com-Tr FSL w/o w/o 10 Org-Te 32.17 50.72  
 Com-Tr FSL w/o w/o 20 Org-Te 32.08 48.57  
 Com-Tr FSL w/o w/o 40 Org-Te 30.92 47.39  
 Com-Tr FSL w/o w/o 80 Org-Te 29.34 46.71  
 Org-Tr – w w/o – Org-Te 37.70 57.53  
 Com-Tr FSL w w/o 5 Org-Te 47.93 69.16  
 Com-Tr FSL w w/o 10 Org-Te 47.72 69.03  
 Com-Tr FSL w w/o 20 Org-Te 47.79 67.07  
 Com-Tr FSL w w/o 40 Org-Te 46.93 66.67  
 Com-Tr FSL w w/o 80 Org-Te 46.21 65.83  
 Org-Tr FSL w w/o 20 Nt 17.07 32.17  
 Org-Tr FSL w/o w/o 20 Nt 14.02 28.48  
 Com-Tr (80%) FSL w w/o 20 Nt 40.58 63.68  
 Com-Tr (80%) FSL w/o w/o 20 Nt 39.30 62.44  
Fig. 6. Coherence evaluation results by calculating the BERT similarity within the generated dataset. (a and b) represent the AskAPatient dataset, while (c and d) represent the 
TwADR-L dataset. All similarity scores were calculated after removing duplicated records.
15 
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variations, while smaller in-context examples tend to produce more 
consistent and homogeneous outputs. This trade-off between diver-
sity and coherence underscores the importance of tailoring few-shot 
prompting strategies to specific task requirements, balancing precision 
and variability based on downstream applications.

5.3. Data augmentation settings on performance improvement

5.3.1. Duplication of data items
In alignment with our previous zero-shot duplication analysis, we 

investigated the impact of duplication on few-shot learning. During 
these experiments, we excluded all concept-to-concept data points 
where the informal phrase and medical concept were identical, as these 
do not aid in improving model performance. The original training 
data contains duplication, which has a significant effect on model 
accuracy. For the AskAPatient dataset presented in Table  9, the removal 
of duplication leads to a noticeable drop in performance. Specifically, 
without duplication, the original training data achieves a top-1 ac-
curacy of 69.98% and a top-5 accuracy of 87.33%. In contrast, with 
duplication, these accuracies rise to 86.66% and 94.65%, respectively. 
A similar pattern is observed for the TwADR-L dataset, where the 
absence of duplicated data points significantly reduces the model’s 
accuracy. Without duplication, the model achieves a top-1 accuracy 
of 28.97% and a top-5 accuracy of 50.15%. However, the presence of 
duplication improves the accuracies to 37.70% for top-1 and 57.53% 
for top-5. These findings underscore the complexities introduced by 
duplication in the original data [90], which can hinder the model’s 
ability to generalize effectively across diverse concepts.

5.3.2. Influence of data volume
Table  9 provides a comprehensive evaluation of the influence of 

data augmentation size on model performance across two datasets,
AskAPatient and TwADR-L. The experiments systematically varied the 
augmentation size, evaluating the model under both small-scale (5, 10, 
and 20 data points) and larger-scale (40 and 80 data points) few-shot 
learning scenarios. The augmented datasets were generated using few-
shot prompting techniques, allowing the model to incorporate varying 
degrees of additional context.

The results indicate that moderate levels of augmentation improve 
accuracy, but diminishing returns and slight degradations appear at 
larger augmentation sizes. For the AskAPatient dataset, in the absence 
of duplication, top-1 accuracy improved from 69.98% (original data) 
to 71.73%, 72.16%, and 70.51% with 5, 10, and 20 additional data 
points, respectively. However, as augmentation increased further to 
40 and 80 data points, performance slightly dropped to 70.03% and 
69.24%. A similar trend was observed in the top-5 accuracy, which 
peaked at 88.85% with 20 additional points before declining to 87.95% 
and 86.74%.

This trend is mirrored in the TwADR-L dataset. Top-1 accuracy 
increased from 28.97% to 32.54%, 32.17%, and 32.08% with 5, 10, 
and 20 points, but larger augmentation sizes (40 and 80) led to slight 
decreases, with scores dropping to 30.92% and 29.34%. Similarly, top-5 
accuracy peaked at 52.31% before declining to 47.39% and 46.71%.

The findings highlight the role of few-shot learning in leverag-
ing limited data to improve model performance. Even with minimal 
to moderate augmentation (e.g., 5–20 examples), noticeable perfor-
mance gains were observed, demonstrating the effectiveness of few-shot 
prompting in capturing task-relevant patterns. However, the diminish-
ing returns observed at larger augmentation sizes emphasize the need 
to optimize data volume, balancing between coherence and diversity 
to prevent performance degradation. These insights are particularly 
critical for tasks such as medical text processing, where both precision 
and generalization are essential.
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5.3.3. Evaluation using new testing set (Nt)
To address the challenge of model generalization in real-world 

scenarios, a novel testing set, referred to as 𝑁𝑡, was introduced. 𝑁𝑡 was 
created by combining 20% of the generated data, not used in training, 
with the original test data (t0). This approach allowed us to evaluate 
the model’s performance on a more diverse and realistic dataset. For the 
AskAPatient dataset, the model trained on the combined dataset and 
tested on 𝑁𝑡 shows top-1 accuracies ranging from 38.41% to 59.62% 
and top-5 accuracies from 57.06% to 81.34%. In contrast, for the 
TwADR-L dataset tested on 𝑁𝑡, top-1 accuracies range from 17.07% to 
40.58%, and top-5 accuracies from 32.17% to 63.68%. These variations 
demonstrate the challenges and the potential of using such a mixed 
test set to truly evaluate the model’s adaptability and generalization to 
new, unseen data, providing a more comprehensive assessment of its 
performance in real-world settings.

5.4. Discussions

Our study demonstrates that few-shot learning (FSL) significantly 
outperforms zero-shot learning (ZSL) in data augmentation for medical 
concept normalization (MCN), primarily by enhancing the comprehen-
siveness and alignment of generated data with the original dataset. 
FSL-generated data not only exhibits higher semantic similarity to the 
original data but also improves model generalization as highlighted 
by research [89], leading to more robust and accurate performance 
across various testing scenarios. Importantly, our findings underscore 
the nuanced impact of data quality dimensions — volume, accuracy, 
and comprehensiveness — on AI performance. While increasing the 
volume of augmented data can enhance model accuracy, it must be 
done judiciously to avoid introducing noise that could undermine 
performance, as cautioned by previous studies [91,92]. Additionally, 
ensuring the accuracy of the data, particularly in avoiding issues like 
duplication, is crucial for reliable model outcomes [90]. These insights 
highlight the superiority of FSL in generating high-quality synthetic 
data, making it a more effective approach for advancing MCN tasks 
in practice.

6. An approach for quality evaluation and improvement for deep 
learning

In this section, we introduce a framework aimed at automating 
the quality evaluation and enhancement of datasets, with a specific 
focus on Medical Concept Normalization (MCN) tasks. The core of 
this approach leverages BERT-based similarity measurements to assess 
the semantic quality of data. By analyzing the similarity between 
data points through BERT embeddings, we can evaluate the degree of 
redundancy and diversity within the dataset. This method ensures that 
the data remains comprehensive and accurately reflects the domain, 
which is crucial for the effective normalization of medical concepts.

To further improve the dataset, we employ prompt engineering 
techniques using ChatGPT, with a particular emphasis on leveraging 
few-shot learning (FSL). In this approach, prompts are carefully de-
signed not only to generate new data that aligns closely with the 
original dataset but also to introduce meaningful variation. By using 
FSL, we provide the model with a few examples of original data, which 
serve as a reference or sample to guide the generation process. These 
examples ensure that ChatGPT produces data that is consistent with the 
nuances and characteristics of the existing dataset.

The prompts typically combine action keywords, such as ‘‘Generate’’ 
or ‘‘Paraphrase’’, with specific inputs, which in the case of FSL, include 
a small, representative set of original data points. This selection of 
inputs plays a critical role in the quality of the output, as the model 
uses these examples to understand the desired structure, tone, and 
content. By strategically choosing these examples, we can exert precise 
control over the relevance, diversity, and novelty of the generated data, 
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ensuring that it remains contextually appropriate and adds value to the 
dataset.

This FSL-driven approach allows for the efficient creation of high-
quality, novel data while minimizing the need for extensive manual 
intervention. By iteratively refining prompts and evaluating the output 
against BERT similarity scores, we can optimize the balance between 
similarity to the original data and the introduction of useful variations. 
This process ultimately enhances the performance and robustness of 
deep learning models in Medical Concept Normalization tasks, ensuring 
that the generated data not only enriches the dataset but also aligns 
closely with the specific requirements of the domain.

7. Conclusion

In this study, we explored the application of large language mod-
els (LLMs), particularly ChatGPT, to improve data quality in medical 
concept normalization (MCN) task. We focused on two widely-used 
datasets, TwADR-L and AskAPatient, to evaluate the impact of various 
data augmentation strategies on MCN task performance. Our approach 
involved utilizing zero-shot and few-shot prompting techniques to gen-
erate additional training data, which were then rigorously evaluated 
for correctness and comprehensiveness. To quantify the semantic coher-
ence between the original and ChatGPT-generated data, we employed 
BERT-based embedding similarity analysis, calculating the cosine simi-
larity between embeddings of phrases associated with the same medical 
concept. This allowed us to assess the extent to which the augmented 
data retained the semantic richness of the original dataset. Addition-
ally, we conducted extensive experiments to examine the effects of data 
augmentation size, duplication, and specific augmentation methods 
(context-specific and synonym-based) on model performance.

Our research demonstrated that while LLMs like ChatGPT are ca-
pable of generating high-quality data for MCN tasks, the effectiveness 
of data augmentation varies significantly depending on the strategy 
employed. Zero-shot data augmentation, though effective in increasing 
data quantity, sometimes introduced semantic drift, particularly when 
overused, which led to diminished model performance. These findings 
highlight the importance of balancing augmentation size and main-
taining data comprehensiveness to avoid the pitfalls of data noise. In 
contrast, few-shot learning techniques proved to be more effective than 
zero-shot approaches. The data generated through few-shot learning 
exhibited higher semantic similarity to the original dataset, indicating 
that providing the model with a few examples enables it to produce 
augmented data that better preserves the contextual integrity of the 
original data. This suggests that few-shot learning is a more reliable 
strategy for generating high-quality augmented data in MCN tasks.

Despite these promising results, our study has several limitations. 
First, the reliance on ChatGPT for data generation may introduce biases 
inherent to the LLM itself, which were not fully explored or mitigated in 
this study. Additionally, the datasets used — TwADR-L and AskAPatient 
— have intrinsic data quality issues, such as duplication and lack of 
comprehensiveness, which may have influenced the outcomes. Lastly, 
our experiments were conducted on a limited number of datasets, 
which may affect the generalizability of our findings to other MCN 
datasets or domains.

Building on the insights gained from this study, future research 
should focus on several key areas. First, a deeper investigation into 
the biases introduced by LLMs during data generation is necessary to 
enhance the reliability of augmented data. These biases might influ-
ence the fairness and accuracy of the resulting datasets, impacting the 
overall model performance [93,94]. Additionally, collaborating with 
linguistic experts to design more effective prompts will lead to more 
contextually appropriate and semantically rich outputs [95], which 
might improve the quality and relevance of the generated data. Finally, 
future work could explore the integration of more advanced data 
augmentation techniques, such as domain-specific fine-tuning of LLMs 
or hybrid approaches that combine LLM-generated data with traditional 
augmentation methods. These strategies are essential for tailoring LLMs 
to specific tasks, thereby enhancing the performance of MCN models.
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Table 10
Abbreviations and acronyms used in this article.
 Abbreviations Full name of concepts  
 MCN Medical Concept Normalization  
 LLMs Large Language Models  
 NLP Natural Language Processing  
 ZSL Zero-Shot Learning  
 FSL Few-Shot Learning  
 ORG Original Dataset  
 COM Combined Dataset  
 DA Data Augmentation  
 ML Machine Learning  
 DL Deep Learning  
 TL Transfer Learning  
 RL Reinforcement Learning  
 CNE Deep Neural Embedding  
 CNN Convolutional Neural Network  
 DNN Deep neural network  
 AL Active Learning  
 NER Name Entity Recognition  
 UMLS Unified Medical Language System 
 MEL Medical Entity Linking  
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